德庆县汉龙陶瓷原料有限公司技术改造项 目竣工环境保护验收监测报告

编制单位:德庆县汉龙陶瓷原料有限公司 2020年11月

目 录

1 项目概况	1
2 验收依据	3
2.1 建设项目环境保护相关法律、法规和规章和规范	3
2.2 建设项目竣工环境保护验收技术规范	3
2.3 建设项目环境影响报告书(表)及其审批部门审批决定	3
2.4 其他相关文件	4
3 项目建设情况	5
3.1 地理位置及平面布置	5
3.2 建设内容	5
3.3 主要原辅材料及燃料	8
3.4 水源及水平衡	8
3.5 生产工艺	10
3.6 项目变动情况	11
4环境保护设施	13
4.1 污染物治理/处置设施	13
4.1.1 废水	13
4.1.2 废气	14
4.1.3 噪声	14
4.1.4 固体废物	14
4.2 环保设施投资及"三同时"落实情况	15
5建设项目环评报告表的主要结论与建议及其审批部门审批决定	17
5.1 建设项目环评报告表的主要结论与建议	17
5.1.1 环境影响评价结论	17
5.1.2 建议	18
5.1.3 结论	18
5.2 审批部门审批决定	19
6 验收执行标准	21

	(1) 废水验收执行标准	.21
	(2) 废气验收执行标准	.21
	(3) 噪声验收执行标准	. 22
	(4) 固体废物验收执行标准	. 22
7 验	:收监测内容	.23
8 质	量保证及质量控制	. 24
	8.1 监测分析方法及监测仪器	. 24
	8.2 人员资质	. 25
	8.3 气体监测分析过程中的质量保证和质量控制	. 25
	8.4 噪声监测分析过程中的质量保证和质量控制	. 26
9 验	收监测结果	. 28
	9.1 检测期间生产工况	. 28
	9.2 监测期间天气情况	. 28
	9.3 污染物排放监测结果	. 29
	9.3.1 废气	. 29
	9.3.2 厂界噪声	. 31
	9.3.3 污染物排放总量核算	. 31
	9.3.4 环境保设施调试效果	. 32
10 ∄	不保检查结果	. 34
	10.1 建设项目环境管理制度情况	. 34
	10.2 环境保护审批手续及环境保护档案资料管理情况	. 34
	10.3 其他环境保护设施	. 35
	10.4 当前试生产到现在的守法情况	. 35
11 马	俭收监测结论	. 36
	11.1 废水	. 36
	11.2 废气	. 36
	11.3 噪声	. 36

11.5 建议	36
11.6 结论	37
12 建设项目竣工环境保护"三同时"验收登记表	38
附图 1 项目地理位置图	39
附图 2 项目卫星四至图	40
附图 3 项目环境敏感目标分布图	41
附图 4 厂区总平面布置图	42
附图 5 项目监测布点示意图	43
附图 6 采样图片	44
附图 7 公示错	误!未定义书签。
附件 1: 营业执照	45
附件 2: 法人身份证	46
附件 3: 环评批复	47
附件 4: 验收检测报告	51
附件 5: 应急预案备案表	65

1项目概况

德庆县汉龙陶瓷原料有限公司技术改造项目位于德庆县悦城镇翠塘村委会鲤鱼头,地理坐标为: 23°7'11.15"N,112°8'26.43"E。本项目主要从事陶瓷砂加工的生产,占地面积为44391.7m²。厂房为钢结构,主要有钠石粉生产区、石英砂烘干区、石英砂清洗区、石英砂堆场、钠石粉堆场。本项目总投资为150万元,其中环保投资10万元,占总投资额的6.66%。年产陶瓷砂(钠石粉)5万吨、石英矿石4万吨。

德庆县汉龙陶瓷原料有限公司于 2014 年 1 月委托四川省国环环境工程咨询有限公司编制了《德庆县悦城镇鲤鱼头汉龙陶瓷原料堆场年加工 5 万吨钠石粉建设项目环境影响报告书》,于 2014 年 4 月 12 日取得肇庆市环境保护局出具的《德庆县悦城镇鲤鱼头汉龙陶瓷原料堆场年加工 5 万吨钠石粉建设项目环境影响报告书的审批意见》(肇环建【2014】48 号)。于 2015 年 12 月 3 日通过了肇庆市环境保护局的验收,(肇环建【2015】100 号)。2016 年 8 月德庆县汉龙陶瓷原料有限公司委托广州材高环保科技有限公司编制了《德庆县汉龙陶瓷原料有限公司年加工 4 万吨石英矿石扩建项目环境影响报告表》,并于 2016 年 9 月 9 日取得了肇庆市生态环境局德庆分局的【关于《德庆县汉龙陶瓷原料有限公司年加工 4 万吨石英矿石扩建项目环境影响报告表》的批复】(德环项目【2016】27 号)。2020 年 3 月德庆县汉龙陶瓷原料有限公司委托广东中禹环境科技有限公司编制了《德庆县汉龙陶瓷原料有限公司技术改造项目环境影响报告表》,并于 2020 年 4 月 27 日取得了肇庆市生态环境局德庆分局,的【关于《德庆县汉龙陶瓷原料有限公司技术改造项目环境影响报告表》的批复】(肇环德建【2020】9 号)。

本项目设备及环境保护设施于 2020 年 3 月开工建设,于 2020 年 9 月 10 日本次项目已建设设备竣工,并于 2020 年 9 月 15 日开始进行调试。

本项目已在 2020 年 8 月下旬完成全国排污许可登记,排污许可登记编号为: 914412263981624712001Y。

《德庆县汉龙陶瓷原料有限公司突发环境事件应急预案》于 2020 年 10 月 27 日在肇庆市生态环境局德庆分局备案(附件 5),备案编号:德环应急备【2020】19号。

本项目各主要生产设备和环境保护治理设施建设后试运行正常,环保手续齐 全,已具备了项目竣工环境保护验收条件,根据《国务院关于修改〈建设项目环境 保护管理条例〉的决定》(国务院令第 682 号)第十七条,"编制环境影响报告书、环境影响报告表的建设项目竣工后,建设项目应当按照国务院环境保护行政主管部门规定的标准和程序,对配套建设的环境保护设施进行验收,编制验收监测报告。"同时根据《建设项目竣工环境保护验收暂行办法》的规定,建设单位于 2020年 9 月启动环保验收工作,对本建设项目建设内容以及其环境保护治理设施进行验收。项目委托东莞市华溯检测技术有限公司作为德庆县汉龙陶瓷原料有限公司技术改造项目的验收监测单位,于 2020年 9 月 25 日~26 日对本项目的废气、噪声等状况进行采样监测。建设单位对照建设项目环境影响评价报告表意见及建议,环评批复文件以及相关审批文件要求进行环境保护管理检查,同时根据验收监测结果,对照《建设项目竣工环境保护验收技术指南 污染影响类》编写本验收监测报告。

2 验收依据

2.1 建设项目环境保护相关法律、法规和规章和规范

- (1)《中华人民共和国环境保护法》(2015年1月1日实施);
- (2)《中华人民共和国大气污染防治法》(2018年10月修正);
- (3)《中华人民共和国水污染防治法》(2018年1月1日起执行);
- (4) 《中华人民共和国土地管理法》(2004年8月28日修订);
- (5)《中华人民共和国水土保持法》(2011年3月1日起施行);
- (6) 《建设项目环境影响评价分类管理名录》(2018年4月28日起施行);
- (7)《中华人民共和国固体废物污染环境防治法》(2020年9月1日实施);
- (8)《中华人民共和国环境影响评价法》(2016年9月1日实施);
- (9) 《建设项目环境保护管理条例》(国务院第 682 号令, 2017 年 7 月 16 日 修订, 自 2017 年 10 月 1 日起施行);
- (10)广东省环境保护厅《关于转发环境保护部〈建设项目竣工环境保护验收暂行办法〉的函》(粤环函〔2017〕1945号》;
- (11) 肇庆市环境保护局关于转发《关于转发环境保护部〈建设项目竣工环境保护验收暂行办法〉的函》(肇环函(2018)36号);
- (12) 《建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号, 2017年11月20日起施行);
- (13)《环境保护部办公厅关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办[2015]52号,2015年6月4日);
- (14)《中华人民共和国环境噪声污染防治法》(2018年修订版,2018年12月 29日实施)。

2.2 建设项目竣工环境保护验收技术规范

- (1)《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部办公厅 2018年5月16日印发);
- (2)《肇庆市过渡时期建设单位自主开展建设项目环境保护设施验收的工作指引》。

2.3 建设项目环境影响报告书(表)及其审批部门审批决定

- (1)四川省国环环境工程咨询有限公司,《德庆县悦城镇鲤鱼头汉龙陶瓷原料堆场年加工5万吨钠石粉建设项目环境影响报告书》,2014年1月;
- (2) 肇庆市生态环境局,【关于《德庆县悦城镇鲤鱼头汉龙陶瓷原料堆场年加工5万吨钠石粉建设项目环境影响报告书》的批复】肇环建〔2014〕48号文,2014年4月12日;
- (3)肇庆市生态环境局,《德庆县汉龙陶瓷原料有限公司年加工5万吨钠石粉建设项目竣工环境保护验收的意见》(肇环建〔2015〕100号),2015年12月3日:
- (4)广州材高环保科技有限公司,《德庆德庆县汉龙陶瓷原料有限公司年加工4万吨石英矿石扩建项目环境影响报告表》,2016年8月:
- (5) 肇庆市生态环境局德庆分局,【关于《德庆德庆县汉龙陶瓷原料有限公司年加工 4万吨石英矿石扩建项目环境影响报告表》的批复】(德环项目【2016】27号),2016年9月9日;
- (6) 广东中禹环境科技有限公司,《德庆县汉龙陶瓷原料有限公司技术改造项目环境影响报告表》,2020年3月:
- (7) 肇庆市生态环境局德庆分局,【关于《德庆县汉龙陶瓷原料有限公司技术 改造项目环境影响报告表》的批复】(肇环德建【2020】9号),2020年4月7日。

2.4 其他相关文件

- (1) 东莞市华溯检测技术有限公司《德庆县汉龙陶瓷原料有限公司检测报告》 (废气、噪声),报告编号:HSJC20201030019;
 - (2) 德庆县汉龙陶瓷原料有限公司与验收相关的其他资料。

3项目建设情况

3.1 地理位置及平面布置

本项目位于广东省德庆县悦城镇翠塘村委会鲤鱼头,地理坐标为: 23°7′11.15″N,112°8′26.43″E,项目地理位置示意图见附图 1,项目东侧、北侧为林地,南侧为鱼塘和林地,西侧为农地,项目卫星四至图见附图 2。项目周围环境敏感点见表 3-1。项目环境敏感目标分布图见附图 3。

名称	坐 X	冢/m Y	保护 对象	保护 内容	环境功能区	相对厂 址方位	相对项目 厂房最近 距离		
翠塘	922	1263	居民			东北面	1304m		
下旗岗	519	908	居民			东北面	786m		
朗塘岗村	566	396	居民			东北面	410m		
上垞村	377	-432	居民			东南面	385m		
下垞村	0	-1044	居民	大气 环境		南面	900m		
杨梅塘	20	-1377	居民		十层环接一米区	南面	1250m		
牙鹰磅	-621	-394	居民		环境	大气环境二类区	西南面	640m	
	-418	-1147	学生			西南面	980m		
枫香根	-654	103	居民			西北面	620m		
香炉塘	-771	207	居民			西北面	750m		
冲口村	-353	619	居民			西北面	560m		
聚英小学	-375	1068	学生					西北面	1050m
枫香根排渠	0	-3	河流		IV类水体	南面	3m		
悦城河	220	0	河流		III类水体	东面	220m		

表3-1 项目主要环境保护目标

注: 以项目正中央位置为中心坐标(0,0),正东向为 X 轴正向、正北向为 Y 轴正向。

项目占地面积约为 44391.7m², 厂房为钢结构。钠石粉生产区在厂区西北面; 石英砂清洗区和在石英砂烘干区西北面(钠石粉生产区下方); 石英砂堆场在厂区西面; 钠石粉堆场在厂区西南面; 固体废物仓库厂区在厂区东面,总平面布置图见附图 4。

3.2 建设内容

本项目主要产品为陶瓷砂(钠石粉)5万吨、石英矿石4万吨。项目总投资为150万元,其中环保投资10万元,占总投资额的6.66%。本项目主要设备及设施有破碎

机、脱水筛、振动筛、输送带。环评及批复阶段报备的设备与实际使用设备见对比一览表见表3-2,项目环评及批复阶段建设内容与实际建设内容一览表见表3-3。

表3-2 环评及批复阶段报备的设备与实际使用设备见对比一览表

生产		规格 (型号)	设备设计	数量(台)		
线名 称	设备名称		产能	环评及批复规 划建设	本次验收	未建设
	输送带	/	/	7	7	0
	电柜	/	/	2	2	0
	给料机	/	10t/h	3	1	2
	鄂式破碎机	/	10t/h	2	1	1
	圆锥机	/	20t/h	2	0	2
钠石 -	冲击式破碎机	/	15t/h	2	0	2
粉生	振动筛	/	15t/h	6	2	4
产线	轮式水洗机	/	/	4	2	2
	螺旋水洗机	/	10t/h	5	1	4
	脱水筛	/	/	4	1	3
	厢式压滤机	/	/	1	1	0
	球磨机	/	/	4	0	4
	水泵	/	/	10	10	0
	振动筛	/	15t/h	3	3	0
	提升机	/		2	2	0
	叉车	/		2	2	0
	烘干	/	/	6	6	0
	输送带	/	/	12	6	6
石英	玻璃钢旋流溜槽	/	/	4	4	0
砂生	清洗装置	/	/	4	4	0
产线	水罐	/	/	3	3	0
	转笼筛	/	/	2	2	0
	真空脱水机	/	/	1	1	0
	储料仓(缓冲)	/	/	2	2	0
	热水炉	/	/	2	2	0
	水泵	/	/	8	8	0

表3-3 环评及批复阶段建设内容与实际建设内容一览表

工 程 类 别	工程名称	环评及批复阶段建设内容	实际建设内容	与环评相符 性分析
主 体 工 程	厂房 建设	厂房为钢结构,占地面积约为44391.7m²,1层,厂房地面硬底化。	厂房为钢结构,占地面积约为 44391.7m², 1 层,厂房地面硬底 化。	一致
	给水	生产用水由枫香根排渠经泵抽至回用池再经泵抽至各生产用水点。	生产用水由枫香根排渠经泵抽至 回用池再经泵抽至各生产用水点	一致
公用工程	排水	实行雨污分流制。大部分水进入产品或在蒸发至大气中,生活污水处理达标后全部回用于生产;生产废水经沉淀后用于洒水抑尘或循环使用;初期雨水经处理后回用于厂区抑尘;车辆清洗废水经车辆清洗池简单沉淀后再经污水沉淀池沉淀后回用于厂区车辆冲洗,不外排。	实行雨污分流制。大部分进入产品或在蒸发至大气中,生活污水处理达标后全部回用于生产;生产废水经沉淀后用于洒水抑尘或循环使用;初期雨水经处理后回用于厂区抑尘;车辆清洗废水经车辆清洗池简单沉淀后再经污水沉淀池沉淀后回用于厂区车辆冲洗,不外排。	一致
	配电 系统	接市政供电系统	接市政供电系统	一致
	 汚水 处理 工程	项目废水主要为生产废水。生产废水进入污水处理站经处理 达标后全部回用,不外排。	项目废水主要为生产废水。生产 废水进入污水处理站经处理达标 后全部回用,不外排。本项目不 新增员工,依托原有处理设施。	一致
环保工程	废气 治理 工程	堆场扬尘经堆场内配套洒水装置抑尘后无组织排放;装卸粉尘在厂区内配置洒水装置,装卸时洒水抑尘后无组织排放;振筛粉尘通过布袋除尘器除尘设施后由15m高排气筒 G1排放;生物液体燃料燃烧废气:不低于15m高排气筒 G2排放;厨房烹调油烟经静电除油器处理后高空排放。	堆场扬尘经堆场内配套洒水装置 抑尘后无组织排放;装卸粉尘在 厂区内配置洒水装置,装卸时洒水抑尘后无组织排放;振筛粉尘 通过布袋除尘器除尘设施后由 15m高排气筒 G1 排放;生物液体燃料燃烧废气经水箱过滤后由 15m高排气筒 G2 排放;厨房烹调油烟经静电除油器处理后高空排放。	一致
	噪声 治理 工程	选用低噪设备、距离衰减等综 合措施。	选用低噪设备、距离衰减等综合 措施。	一致
	固废 处置 工程	生活垃圾集中收集后交由当地 环卫部门清运处理;工业固废 回收商处理。	生活垃圾集中收集后交由当地环 卫部门清运处理;工业固废作为 产品外售处理。	一致

3.3 主要原辅材料及燃料

表3-4 主要原辅材料及燃料

名称	来源	环评及批复规 划建设	实际使用情况	与环评是 否一致
钠石原矿	外购	50033	42000	基本一致
石英砂	外购	40007	37000	基本一致
生物燃料油	外购	300	300	一致

3.4 水源及水平衡

①给水:本项目用水为本项目主要废水为抑尘废水、车辆冲洗废水、水洗废水、脱水废水:由枫香根排渠经泵抽至回用池再经泵抽至各生产用水点。总用水量约为11740t/a。

②排水:本项目生产废水不外排。实行雨、污分流制。雨水经雨水管网收集后,经沉淀池处理后回用于生产。

③水平衡

本项目总用水量为11740t/a,生产废水不外排,项目的水平衡图见图3-1。

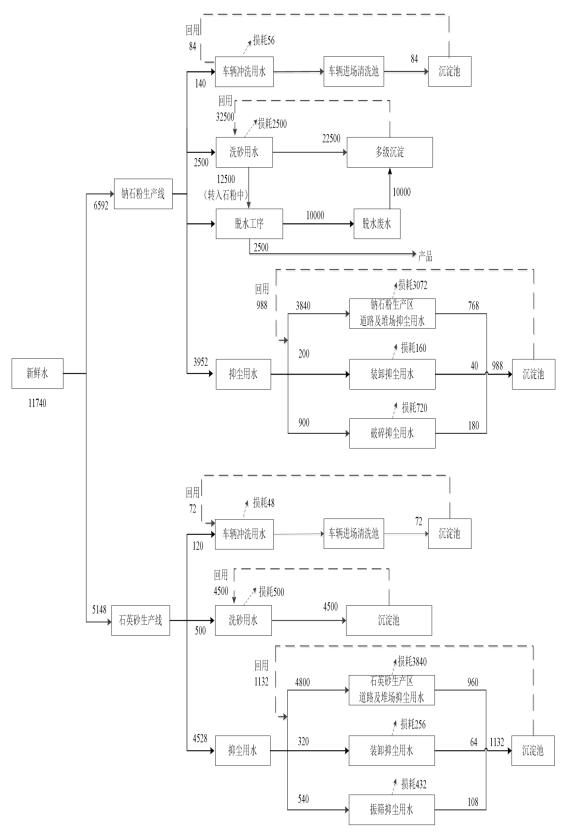


图 3-1 项目水平衡示意图 (t/a)

3.5 生产工艺

本次技改内容是对《德庆县汉龙陶瓷原料有限公司年加工4万吨石英矿石扩建项目环境影响报告表》生产工艺的技改,石英砂生产线取得批复后建设试生产过程中发现随着市场需求变化,工艺不再符合现状要求,故进行升级改造,现重新办理环评手续进行报批。钠石粉生产线原料进行了调整,将钠石粉原料调整为钠石原矿,自行破碎生产钠石粉,同时取消了原硫酸酸洗的工序,调整为水洗;石英砂生产线将石英原矿调整为石英砂,取消破碎工序,增加一道水洗工序等。项目技改后具体生产流程如下:

钠石粉生产线:

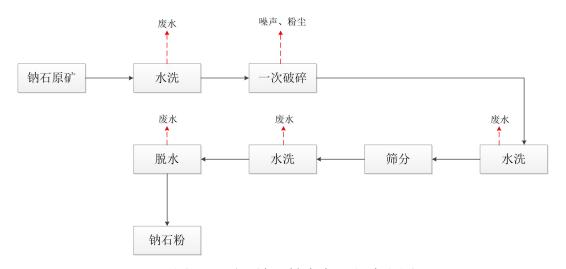


图 3-2 项目钠石粉生产工艺流程图

石英砂生产线:

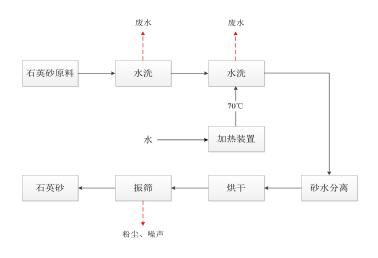


图 3-3 项目石英砂生产工艺流程图

3.6 项目变动情况

表 3-5 本项目实际建设情况与《关于印发环评管理中部分行业建设项目重大变动清单的通知》的对比分析

	重大变动清单	环评规划设计情况	实际建设情况	是否发生重大变更
一、性质				
1	主要产品品种发生变化(变少 的除外)	本项目主要产品为陶瓷砂(钠石粉)、 石英矿石	本项目主要产品为陶瓷砂(钠石粉)、 石英矿石	否
二、规	莫			
1	生产能力增加 30%及以上	陶瓷砂(钠石粉)5万吨、石英矿石4 万吨。	陶瓷砂(钠石粉)5万吨、石英矿石4 万吨。	否
2	新增主要设备设施,导致新增 污染物因子或污染物排放量增加;原有主要设备设施规模增加30%及以上,导致新增污染物因子或污染物排放量增加	本项目主要噪声源为破碎机、水洗机、 等设备	本项目主要噪声源为破碎机、水洗机、 等设备	否
三、地方	点			
1	项目重新选址	项目位于德庆县悦城镇翠塘村委会鲤鱼 头	项目位于德庆县悦城镇翠塘村委会鲤鱼 头	否
2	在原厂址内调整(包括总平面 布置和生产装置发生变化)导 致不利环境影响显著增加。	项目占地面积约为 44391.7m², 该项目主要设备及设施有破碎机、水洗机、输送带、铲车、电机、真空脱水机、电柜等。	项目占地面积约为 44391.7m²,该项目主要设备及设施有破碎机、水洗机、输送带、铲车、电机、真空脱水机、电柜等。	否
3	防护距离边界发生变化并新增 了敏感点。	不设卫生防护距离。	不设卫生防护距离。	否
4	厂外管线路由调整,穿越新的 环境敏感区;在现有环境敏感 区内路由发生变动且环境风险 显著增大。	项目涉及厂外管线主要为供电管线,不 属于项目建设内容。	项目涉及厂外管线主要为供电管线,不 属于项目建设内容。	否

四、生产	∸ 工艺			
1	主要生产装置类型、主要原辅 材料类型、主要燃料类型以及 其他生产工艺和技术调整且导 致新增污染因子或污染物排放 量增加。	本次技改内容为对钠石粉生产线原料进行了调整,将钠石粉原料调整为钠石原矿,自行破碎生产钠石粉,同时取消了原硫酸酸洗的工序,调整为水洗;石英砂生产线将石英原矿调整为石英砂,取消破碎工序,增加一道水洗工序等。	本次技改内容为对钠石粉生产线原料进行了调整,将钠石粉原料调整为钠石原矿,自行破碎生产钠石粉,同时取消了原硫酸酸洗的工序,调整为水洗;石英砂生产线将石英原矿调整为石英砂,取消破碎工序,增加一道水洗工序等。	否
五、环境	竟保护措施			
1	污染防治措施的工艺、规模、 处置去向、排放形式等调整, 导致新增污染因子或污染物排 放量、范围或强度增加;其他 可能导致环境影响或环境风险	项目废水主要为生产废水和生活废水。 生产废水进入污水处理站经处理达标后 全部回用,不外排。生活废水经埋地式 生化一体化处理装置处理达标后,回用 于周边果园的灌溉;堆场扬尘经堆场内 配套洒水装置抑尘后无组织排放;装卸 粉尘在厂区内配置洒水装置,装卸时洒 水抑尘后无组织排放;振筛粉尘通过布 袋除尘器除尘设施后由 15m 高排气筒	项目废水主要为生产废水和生活废水。 生产废水进入污水处理站经处理达标后 全部回用,不外排。生活废水经埋地式 生化一体化处理装置处理达标后,回用 于周边果园的灌溉;堆场扬尘经堆场内 配套洒水装置抑尘后无组织排放;装卸 粉尘在厂区内配置洒水装置,装卸时洒 水抑尘后无组织排放;振筛粉尘通过布 袋除尘器除尘设施后由 15m 高排气筒	否

二、工程变动情况

增大的环保措施变动。

本次验收项目的性质、规模、地点、生产工艺与环评和批复意见基本一致。项目建设由于市场原因,项目分期建设,项目已建成石英砂生产线和钠石粉生产线,尚有部分钠石粉生产线破碎工艺生产设备未建。以上变动均未造成对环境影响加重,不属于重大变动。

G1 排放; 生物液体燃料燃烧废气通过

水箱过滤后由 15m 高排气筒 G2 排放;

厨房烹调油烟经静电除油器处理后高空

排放;噪声通过隔声墙,距离衰减等综

合措施处理。

G1 排放; 生物液体燃料燃烧废气: 不

低于 15m 高排气筒 G2 排放; 厨房烹调

油烟经静电除油器处理后高空排放; 噪

声通过隔声墙, 距离衰减等综合措施处

理。

4环境保护设施

4.1 污染物治理/处置设施

4.1.1 废水

(1) 车辆冲洗用水

本项目每天对进出场的铲车和运输车辆进行冲洗,钠石粉生产线年补充车辆清洗用水量为 56m³/a, 石英砂生产线年补充车辆清洗用水量为 48m³/a。

(2) 洗砂废水

①钠石粉生产线水洗用水

项目钠石粉生产线水洗工序产生的废水,该部分废水经多级沉淀后循环使用,不外排。

②石英砂生产线水洗用水

项目石英砂生产线水洗工序产生的废水,该部分废水经多级沉淀后循环使用,不外排。

(3) 抑尘废水

①钠石粉生产线抑尘用水

本项目钠石粉生产线抑尘废水大部分进入产品或在蒸发至大气中,少量排水经厂区的截排水沟汇入厂区沉淀池,经沉淀处理后全部回用于厂区用水。

②石英砂生产线抑尘用水

本项目石英砂生产线抑尘废水大部分进入产品或在蒸发至大气中,少量排水经厂区的截排水沟汇入厂区沉淀池,经沉淀处理后全部回用于厂区用水。

(4) 脱水废水

本项目脱水废水经沉淀处理后全部回用于厂区用水。

表4-1 废水治理措施及排放去向

废水 类别	来源	污染物 种类	排放量 (t/a)	治理 措施	设计指标	废水回 用量 (m³/a)	排放去向
车辆 冲洗 用水	车辆冲 洗	SS、LAS	0	沉淀池	/	156	循环使用
洗砂 废水	抑尘用 水	SS	0	沉淀池	/	2700	循环 使用
抑尘 废水	水洗筛 分	SS	0	多级沉淀池	/	2120	循环 使用
脱水废水	脱水废水	SS	0	多级沉淀池	/	10000	循环 使用

4.1.2 废气

本项目大气污染物主要为堆场扬尘,装卸粉尘,破碎、振筛工序产生的粉尘颗 粒物以及生物液体燃料燃烧废气。

污染物 排放源 治理措施 设计指标 种类 无组织排放,四周围挡,设置挡风抑尘 堆场扬尘 网封闭堆场,并在堆场内配套洒水装 置, 定时洒水 广东省地方标准《大气污染 无组织排放, 堆场地面硬化、设置顶 物排放限值》(DB44/27-装卸粉尘 无组织 颗粒物 棚、四周围挡并在厂区内配置洒水装 2001)第二时段无组织排放限 置,装卸时洒水抑尘 值 无组织排放,围蔽作业,设置围挡密闭 及机器周边设置自动洒水装置,车间周 破碎粉尘 边设置的自动洒水装置对其进一步抑尘 振筛机围挡密闭,粉尘由吸尘管及吸风 广东省地方标准《大气污染 颗粒物 有组织 口收集后通过收集管路进入布袋除尘器 石英砂振 物排放限值》(DB44/27-除尘后由排气筒 G1 排放 筛粉尘 2001)第二时段二级标准及其 振筛机上方设置自动洒水装置和围挡密 颗粒物 无组织排放限值 无组织 闭, 生产区域设置自动洒水装置 广东省地方环境标准《锅炉 SO_2 生物液体 大气污染物排放标准》

表4-2 废气治理措施及排放形式

4.1.3 噪声

燃料燃烧

废气

有组织 NOx、烟

尘.

项目主要噪声源为破碎机、水洗机、输送带、振动筛等设备以及运输车辆运行产生的噪声,其强度值大约为 70~85dB(A)。

经水箱过滤后由排气筒 G2 排放

(DB44/765-2019) 表 2 新建

锅炉大气污染物排放限值

噪声设备名 称	数量 (台、条)	单台设备源 强 dB(A)	治理后源 强dB(A)	治理措施
破碎机	3	85	75	选用低噪声、振动小的设备;隔声距离 衰减
水洗机	3	80	70	选用低噪声、振动小的设备;隔声、距离衰减
输送带	10	75	65	选用低噪声、振动小的设备;隔声、距 离衰减

表 4-3 噪声来源及治理措施

4.1.4 固体废物

本项目产生的固体废物主要为沉淀池污泥。项目固体废物污染源详细分析如下:

(1) 沉淀池污泥

项目沉淀池污泥产生量约 33.572t/a, 收集后作为产品外售。

(2) 布袋除尘器收集粉尘

项目布袋除尘器收集粉尘收集量约 1.9602t/a, 收集后作为产品外售。

4.2 环保设施投资及"三同时"落实情况

项目总投资150万元,其中环保投资10万元,占总投资的6.66%。环保投资具体见表4-4。

表4-4 项目建设环保投资情况表

项目	环保设施名称	环保投资 (万元)	实际投资(万元)
废气	布袋除尘器	4	4
噪声	隔声	3	3
固废	设置定点垃圾桶、固体废物 贮存点建设	2	2
绿化	草地	1	1
合计	-	10	10

环评及批复要求的环保设施"三同时"落实情况见表4-5。

表4-5 本项目环评及批复要求的环保设施"三同时"落实情况表

 序 号	污染物	环评及批复要求	落实情况	与环评是否一致
1	废水	运营期间,项目生产废水循环 回用不外排。	运营期间,项目生产废水循环 回用不外排。	一致
2	废气	运营期间,所有产生粉尘的工序都应进行围闭生产。产生的颗粒物执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准及其无组织排放限值。燃烧废气执行广东省地方环境标准《锅炉大气污染物排放标准》(DB44/765-2019)表2新建锅炉大气污染物排放限值。	运营期间,所有产生粉尘的工序都应进行围闭生产。产生的颗粒物执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准及其无组织排放限值。燃烧废气执行广东省地方环境标准《锅炉大气污染物排放标准》(DB44/765-2019)表2新建锅炉大气污染物排放限值。	一致
3	噪声	项目应采用低噪声设备,合理 布局产生噪声的设备,并采取 减振、隔音、消音等措施确保 项目厂界噪声符合《工业企业 厂界环境噪声排放标准》 (GB12348-2008)中2类标准 的要求,防止噪声污染影响周 围环境。	项目应采用低噪声设备,合理 布局产生噪声的设备,并采取 减振、隔音、消音等措施确保 项目厂界噪声符合《工业企 业厂界环境噪声排放标准》 (GB12348-2008)中2类标 准的要求,防止噪声污染影响 周围环境。	一致
4	固废	项目一般固体废物应立足于回收利用,不能利用的应按有关要求进行处置;项目产生的危险废物应交有资质单位处置,并建立转移处置联单制度以便于监管;项目的日常生活垃圾应定点收集交环卫部门统一清	项目一般固体废物应立足于回 收利用,不能利用的应按有关 要求进行处置;项目的日常生 活垃圾 应定点收集交环卫部 门统一清运处理。	一致

运 外理	
一	

5 建设项目环评报告表的主要结论与建议及其审批部门审批决定

- 5.1 建设项目环评报告表的主要结论与建议
- 5.1.1 环境影响评价结论

5.1.1.1 地表水环境影响评价

项目生产废水主要为抑尘废水、车辆冲洗废水、洗砂废水及脱水废水。抑尘废水大部分进入产品最后蒸发于大气中,小部分抑尘废水汇入厂区周边的环形水沟,抑尘废水经沉淀池沉淀后回用于厂区抑尘;车辆冲洗废水经收集后排入沉淀池沉淀后回用于车辆冲洗;洗砂废水、脱水废水经多级沉淀后回用于洗砂工序。

综上所述,本项目无外排废水,对周边水体基本无影响,地表水环境影响可以 接受。

5.1.1.2 大气环境影响评价

本项目通过在堆场设置顶棚、围挡,定期洒水,在破碎工序生产线设置围闭,在破碎机上方及进出料口设置自动洒水装置和围挡密闭,生产区域设置自动洒水装置以及在生产车间周边设置自动洒水装置等措施抑制粉尘后,项目扬尘、装卸粉尘及破碎粉尘均可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放限值;项目振筛粉尘由吸尘管及吸风口收集粉尘,粉尘通过收集管路进入布袋除尘器除尘后由15m高排气筒G1排放,未经收集粉尘通过四周围挡和自动洒水装置抑尘后在车间内无组织排放,可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准及其无组织排放限值;生物液体燃料燃烧废气各污染物排放浓度均能达到广东省地方环境标准《锅炉大气污染物排放标准》(DB44/765-2019)新建锅炉执行表2规定的大气污染物排放限值,由引风机引至不低于15m高排气筒G2排放。

综上所述,项目生产废气对周围环境影响不大,大气环境影响可以接受。

5.1.1.3 声环境影响评价

采取本评价提出的减缓措施后,项目营运期四面厂界噪声可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准要求。在正常生产的情况下,项目噪声对声环境影响不大。

5.1.1.4 固体废弃物影响评价

项目营运过程中会产生沉淀池污泥及布袋除尘器收集粉尘。沉淀池污泥及布袋除尘器收集粉尘统一收集后外售给陶瓷厂综合回用。

经上述措施处理后,本项目产生的固体废弃物不会对周围环境造成不良影响。

5.1.1.5地下水影响评价

本项目通过做好防渗处理,在正常的防渗条件下,污水基本不会渗漏,对附近 区域的地下水影响较小,地下水环境影响可以接受。

5.1.1.6 土壤影响评价

本项目主要从事陶瓷原料的加工,根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)中附录 A 土壤环境影响评价项目类别可知,本项目所属行业类别为"其他行业",土壤环境影响评价项目类别为 IV 类,可不开展土壤环境影响评价。

5.1.2 建议

- (1)建立完整的环境管理和环境监测机构,完善环保人员编制,制定环境保护管理的规章制度,定期对员工进行培训和教育,保证污染物治理设施的正常运行。加强企业安全生产管理,树立员工环境风险意识,强化环境风险责任,降低风险事故发生机率。
- (2)在厂房周围安排合理的绿化,既可以美化环境,也可起到吸尘降噪的作用,建议本建设项目应对厂区内的绿化和植被建设作专题设计,多植被、营建防护林带,搞好厂内外环境的绿化工作,将厂区建成一个现代化的绿色厂区。

5.1.3 结论

本项目选址符合国家、广东省产业政策及环境保护规划的要求,符合当地的环境保护规划要求,项目选址具有规划合理合法性和环境可行性。

本项目关于生产废水、生活污水、各类无组织废气、固体废物和设备噪声的污染防治对策和措施切实可行,能够保证达标排放。安全措施规范,可以有效防止安全事故的发生。达标排放的各类污染物对外部水环境、大气环境所构成的影响处于可接受范围,污染物的排放满足环境容量的限制要求,不改变所在地区的环境功能属性。

本项目在保证严格执行我国建设项目环境保护"三同时制度"、对各项污染防治措施和上述建议切实逐项予以落实、并加强生产和污染治理设施的运行管理、保证各种污染物达标排放的前提下,本项目在总体上对周围环境质量的影响可以得到有效控制,符合国家、地方环保标准,因此本项目的建设从环保角度而言是可行的。

5.2 审批部门审批决定

德庆县汉龙陶瓷原料有限公司:

你单位报来的《德庆县汉龙陶瓷原料有限公司技术改造项目建设项目环境影响报告表》(以下简称《报告表》)及相关资料收悉。经研究,我局批复意见如下:

- 一、该项目选址位于德庆县悦城镇翠塘村委会鲤鱼头,地理坐标为(23°7'11.15"N,112°8'26.43"E)。项目在现有厂区内进行技术升级改造,技改前后总占地面积不变。技改项目对原料和生产线进行了调整,钠石粉生产线陶瓷原料石粉调整为陶瓷原料矿石并自行破碎和研磨生产陶瓷砂;同时取消了原硫酸酸洗的工序,调整为水洗;石英砂生产线将石英原矿调整为石英砂,取消破碎工序,增加一道水洗工序。现有项目厂房、原料堆场、办公室等功能性质不变,项目技改后年产陶瓷砂(钠石粉)5万吨、石英砂4万吨。项目总投资150万元,其中环保投资10万元。
- 二、根据《报告表》的评价结论,该项目按照《报告表》所列的性质、规模、 地点、采用的工艺及防治污染、防止生态破坏的措施进行建设,在严格落实《报告 表》提出的各项污染防治措施、生态环境风险防范措施,并确保污染物排放稳定达 标及符合总量控制要求的前提下,其建设从环境保护角度可行。该项目在建设和运 营过程中还应重点做好以下工作:
- (一)运营期间,所有产生粉尘的工序都应进行围闭生产。产生的颗粒物执行 广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准及其 无组织排放限值。燃烧废气执行广东省地方环境标准《锅炉大气污染物排放标准》 (DB44/765-2019)表 2 新建锅炉大气污染物排放限值。
 - (二)运营期间,项目生产废水循环回用不外排。
 - (三)项目应采用低噪声设备,合理布局产生噪声的设备,

并采取减振、隔音、消音等措施确保项目厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准的要求,防止噪声污染影响周围环境。

(四)项目一般固体废物应立足于回收利用,不能利用的应按有关要求进行处置;项目产生的危险废物应交有资质单位处置,并建立转移处置联单制度以便于监管;项目的日常生活垃圾应定点收集交环卫部门统一清运处理。

项目暂存的一般工业固体废物和危险废物,其污染控制须符合《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及《危险废物贮存污染控制标

- 准》(GB18597-2001)的有关要求,防止造成二次污染。
- (五)项目应建立严格的环境管理及环境监测制度,落实岗 位责任制,确保各类污染物稳定达标排放。
- (六)项目应制定有针对性和可操作性的环境风险事故防范措施和应急预案,建立健全事故应急体系,加强应急演练,落实有效事故风险防范和应急措施,有效防范污染事故的发生,并避免因发生事故对周围环境造成污染,确保环境安全。
- (七)项目须做好施工期环境保护工作,落实施工期污染防治。合理安排施工时间,确保施工噪声满足《建筑施工场界环境 噪声排放标准》(GB12523-2011)的要求。
- 三、若项目的性质、规模、地点、采用的生产工艺或防治污染、防止生态破坏的措施发生重大变化,你公司应当重新报批项目环境影响评价文件。

四、严格执行"三同时"制度,项目建成后应按建设项目环境保护的要求开展竣工环境保护验收,经验收合格后主体工程方可投入使用。

肇庆市生态环境局 2020年4月7日

6 验收执行标准

(1) 废水验收执行标准

由于本次技改项目未新增员工,故不新增生活废水。

项目生产废水主要为抑尘废水、车辆冲洗废水、洗砂废水及脱水废水。抑尘废水包括堆场抑尘废水、破碎及振筛工序抑尘废水,抑尘废水大部分进入产品最后蒸发于大气中,小部分抑尘废水汇入厂区周边的环形水沟,抑尘废水经沉淀池沉淀后回用于厂区抑尘;车辆冲洗废水经收集后排入沉淀池沉淀后回用于车辆冲洗;洗砂废水、脱水废水经多级沉淀后回用于洗砂工序,不外排。

(2) 废气验收执行标准

项目运营期间产生的破碎粉尘执行广东省地方标准《大气污染物排放限值》 (DB44/27-2001)第二时段无组织排放限值;筛分粉尘执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准及其无组织排放监控浓度限值要求,具体排放限值见下表:

要素 分类	标准名称	适用 类别	污染 因子	排放限值		
废气	广东省《大气染物排放限值》	第二	颗粒物	有组织	120mg/m³,2.9kg/h, (15m 高的排气筒)	
及气	(DB44-27-2001)	时段	72(1-1)	无组织	1.0mg/m ³	

表6-1 大气污染物排放标准

本项目热水炉和烘干机均使用生物液体燃料,生物液体燃料属于较清洁能源,燃料燃烧废气经同一条排气筒高空排放。烘干机为工业窑炉加热设备,燃烧废气执行《工业炉窑大气污染物排放标准》(GB9078-1996)中的1997年1月1日起二级排放限值;项目热水炉为热水锅炉设备,燃烧废气执行广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)新建锅炉执行表2规定的大气污染物排放限值。由于两标准不交叉执行,而广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)中排放限值更严格。因此,本项目生物液体燃烧废气排放的污染物执行广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)新建锅炉执行表2规定的大气污染物排放限值,具体排放限值见下表:

表 6-2 广东省《锅炉大气污染物排放标准》(DB44/765-2019)(节选)

污染物项目	限值(mg/m³) 燃油锅炉	污染物排放监控位置
颗粒物	20	烟囱或烟道

二氧化硫	100
氮氧化物	200

(3) 噪声验收执行标准

本项目四面厂界噪声排放执行《工业企业环境噪声排放标准》(GB12348-2008)中的2类标准(昼间≤60dB(A)、夜间≤50dB(A))。

(4) 固体废物验收执行标准

项目一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》 (GB18599-2001)及2013修改单。

7验收监测内容

7.1 检测内容

具体监测内容见表 7-1

表 7-1 验收项目、监测点位及监测因子、频次一览表

	检测点位	检测项目	监测频次	采样时间
	石英砂振筛废气处理前		连续监测 2 天,每天	2020.09.25
有组	石英砂振筛废气处理后	颗粒物	人,母人 分时段监 測3次。	~ 2020.09.26
织废气	生物液体燃料燃烧废气排放口	SO ₂ , NO _X , 颗粒物	连续监测 2 天,每天 分时段监 测 3 次。	2020.09.25 ~ 2020.09.26
无组 织废 气	无组织废气 上风向参照点 1# 无组织废气 下风向监控点 2# 无组织废气 下风向监控点 3# 无组织废气 下风向监控点 4#	颗粒物	连续监测 2 天,每天 分时段监 测 3 次。	2020.09.25 ~ 2020.09.26
噪声	厂界外东 1m 处厂界外南 1m 处厂界外西 1m 处厂界外北 1m 处	连续等效声级 (Leq)	连续监测 2 天,每天 昼夜各监 测 1 次。	2020.09.25 ~ 2020.09.26

8质量保证及质量控制

8.1 监测分析方法及监测仪器

根据该项目验收执行标准要求的监测分析方法执行,见表 8-1

表 8-1 检测方法

监测类别	监测项目	监测方法	使用仪器	检出限或范围		
废气	颗粒物	重量法	自动烟尘烟气综合测试	1.0 / 3		
	木灰木立 1/0	НЈ 836-2017	仪 ZR-3260	1.0 mg/m^3		
	颗粒物	重量法	自动烟尘烟气综合测试			
	*************************************	GB/T 16157-1996 及其修改单	仪 ZR-3260			
	50	定电位电解法	自动烟尘烟气综合测试	2 / 3		
	SO_2	НЈ 57-2017	仪 ZR-3260	3 mg/m^3		
	NO_X	定电位电解法	自动烟尘烟气综合测试	2 / 3		
		НЈ693-2014	仪 ZR-3260	3 mg/m^3		
	颗粒物	重量法	智能中流量 TSP 采样器	0.001 / 3		
	大块不至 12J	GB/T15432-1995 及其修改单	崂应 2030	0.001mg/m ³		
———— 噪声	厂界噪声	《工业企业厂界环境噪声排	多功能声级计	28~133dB (A)		
栄尸) が柴戸	放标准》GB12348-2008	AWA5688	26~155UD (A)		
	GB/T16157-1996 及其修改单《固定污染源排气中颗粒物测定与气态污染物采样方法》					
采样依据	HJ/T55-2000《大气污染物无组织排放监测技术导则》GB12348-2008《工业企业厂界环					
		境噪声排放	7标准》			

8.2 人员资质

8.2.1 现场采样及现场检测人员

林关辉、宋永康、罗朝阳、郑景林,人员上岗证情况见表(附件6)。

8.3 气体监测分析过程中的质量保证和质量控制

- (1) 尽量避免被测排放物中共存污染物对分析的交叉干扰。
- (2) 所有监测仪器均在检定/校准周期内。
- (3)废气监测(分析)仪器在测试前按监测因子分别用标准气体和流量计对其进行校核(标定),采样仪器在进入现场前对采样器流量计、流速计等进行校核。在测试时保证其采样流量的准确。废气全程序空白测试结果见表8-2、仪器校准记录见表8-3。

表 8-2 全程序空白测试结果一览表

监测日期	滤膜初始恒重 (g)	现场空白滤膜恒重 (g)	滤膜增量(g)	允许增量范围 (mg)	是否合格
2020.09.25	0.47330	0.47343	0.00013	±0.5	合格
2020.09.26	0.42716	0.42724	0.00008	±0.5	合格

表 8-2 全程序空白测试结果一览表 (续)

监测日期	采样头初始恒重 (g)	现场空白采样头恒重 (g)	采样头增量 (g)	允许增量范围 (mg)	是否合格
2020.09.25	17.78340	17.78358	0.00018	±0.5	合格
2020.09.26	17.78322	17.78332	0.00010	±0.5	合格

表 8-2 全程序空白测试结果一览表(续)

监测日期	滤筒初始恒重 (g)	现场空白滤筒恒重 (g)	滤筒增量 (g)	允许增量范围 (mg)	是否合格
2020.09.25	0.98004	0.98014	0.00010	±0.5	合格
2020.09.26	0.97098	0.97109	0.00011	±0.5	合格

表 8-3 仪器校准记录一览表

监测日期	仪器型号	示值流量 (L/min)	校准仪测量结果 (L/min)	示值误差 (%)	允许示值误差 范围(%)	是否 合格
2020.09.25	智能中流量 TSP 采样器崂应 2030	100.0	100.1	-0.10	±5	合格
2020.09.26	智能中流量 TSP 采样器 崂应 2030	100.0	100.1	-0.10	±5	合格

表 8-3 仪器校准记录一览表(续)

监测日 期	仪器型号	瞬时流量示值 (L/min)	校准仪测量结 果(L/min)	满量程值 (L/min)	示值误差 (%)	允许示值误 差范围(%)	是否合 格
2020. 09.25	自动烟尘烟气 综合测试仪 ZR-3260	20.0	19.2	80	1.0	±5	合格
2020. 09.26	自动烟尘烟气 综合测试仪 ZR- 3260	20.0	19.4	80	0.75	±5	合格

表 8-3 仪器校准记录一览表(续)

		2020.09.25			2020.09.26		
	自动烟	尘烟气综合		 自动烟尘烟气综合测试仪			
仪器型号		ZR-3260		ZR-3260			
—————————————————————————————————————	SO ₂ NO NO ₂			SO ₂	NO	NO ₂	
标气浓度(mg/m³)	152.4	114.4	166.4	152.4	114.4	166.4	
	151	114	167	153	115	166	
	-0.92	-0.35	0.36	0.39 0.52		-0.24	
允许示值误差范围(%)	±5 ±5		±5	±5 ±5		±5	
是否合格	合格	合格	合格	合格	合格	合格	

8.4 噪声监测分析过程中的质量保证和质量控制

- (1) 合理布设监测点位,保证各监测点布设的代表性和可比性。
- (2)噪声监测分析过程中,使用经计量部门检定的、并在有效使用期内的声级计; 声级计在测量前后用标准声源在现场进行校准,其前后校准示值偏差不大于0.5dB。 声级计校准记录一览表见表8-4。

表 8-4 声级计校准情况

监测日期	仪器型号	校准设备型号	校准器标准 值 dB(A)	仪器示值 dB(A)		示值偏	测量前后 允许示值 偏差范围 dB		
		声校准器	94.0	昼间 -	测量前	93.8	0.2	±0.5	合格
2020.	多功能声级计				测量后	94.0	0.2	±0.5	
09.25	AWA5688	AWA6221B		夜间 ·	测量前	93.8	0.1	10.5	△ 均
					测量后	93.9		±0.5	合格
2020.	多功能声级计	声校准器	0.4.0		测量前	93.8	0.1	10.5	人扮
09.26	AWA5688	AWA6221B	94.0	昼间	测量后	93.9	0.1	±0.5	合格

		走山	测量前	93.8	0.1	10.5	
		夜间	测量后	93.7	-0.1	±0.5	口俗

9验收监测结果

9.1 检测期间生产工况

现场检测及采样期间,该企业生产稳定,生产负荷如表 9-1

表 9-1 检测工况表

N	设计年产	实际年产	正常生产	2020.0	9.25	2020.		
产品名称	量	量	日产量	监测期 间产量	生产 负荷	监测期 间产量	生产 负荷	备注
陶瓷砂 (钠石粉)	5万吨	5万吨	200 吨	170 吨	85.0%	180 吨	90.0%	
石英砂	4万吨	4万吨	160 吨	139 吨	86.9%	144 吨	90.0%	

9.2 监测期间天气情况

监测期间天气情况见表9-2。

表 9-2 气象参数

—————— 采样日期	采样次数	天气状况	气温 (℃)	相对湿度 (%)	大气压强 (kPa)	最大风速 (m/s)	风向
	第一次	晴	30.8	58	100.6	2.7	东风
2020.09.25	第二次	晴	32.8	55	100.5	2.4	东风
	第三次	晴	28.9	60	100.7	2.0	东风
	夜间 噪声	晴	27.5	65	100.8	2.2	东风
	第一次	多云	29.8	63	100.8	2.8	东风
	第二次	多云	30.2	61	100.7	2.5	东风
2020.09.26	第三次	多云	28.5	64	100.9	3.1	东风
	夜间 噪声	多云	26.3	66	101.0	2.3	东风

9.3 污染物排放监测结果

9.3.1 废气

表 9-3 石英砂振筛废气检测结果

监测项目及结果

治理措施: 布袋除尘

监测时	监测点		监测项目		监测结果		平均值	处理效 率	标准值	达标
间	位	J	血侧切り口	第一次	第二次	第三次	一月初田	(%)	小竹庄 [且	情况
	石英砂	颗粒物	浓度(mg/m³)	81.2	74.3	60.5	72.0			
	振筛废	排气筒高度(m)				•				
	气处理 前	标况干	废气量(m³/h)	2605	2945	2780	2777			
	ĦIJ	流	速(m/s)	26.9	30.4	28.7	28.7			
振筛			排放浓度 (mg/m³)	14.5	12.4	10.9	12.6	80.9	120	达标
	石英砂 振筛废 气排放 口		排放速率 (kg/h)	4.0×10 ⁻²	4.1×10 ⁻²	3.3×10 ⁻²	3.8×10 ⁻²	80.9	0.64*	达标
		排气筒高度(m)			10)				
		标况干	废气量(m³/h)	2787	3285	3007	3026			
		流速(m/s)		51.2	60.3	55.2	55.6			
	石英砂	颗粒物	浓度(mg/m³)	89.6	78.2	57.9	75.2			
	振筛废	排气筒高度(m)								
	气处理 前	标况干	废气量(m³/h)	2480	3187	2761	2809			
	'n	流	速(m/s)	25.6	32.9	28.5	29.0			
2020. 09.26		颗粒物	排放浓度 (mg/m³)	16.7	14.8	11.2	14.2	79.4	120	达标
	石英砂 振筛废	A央イ立 1/0	排放速率 (kg/h)	4.6×10 ⁻²	4.9×10 ⁻²	3.5×10 ⁻²	4.3×10 ⁻²	79.4	0.64*	达标
	气排放	排气	筒高度 (m)		10					
		标况干	废气量(m³/h)	2762	3312	3100	3058			
		流	速(m/s)	50.7	60.8	56.9	56.1			

注: 1、执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准;

^{2、&}quot;*"表示排气筒低于 15 m 时, 其排放速率限值按本标准规定的外推法计算结果的 50%执行;

^{3、}本结果只对当时采集的样品负责。

表 9-4 生物液体燃料燃烧废气检测结果

监测项目及结果

治理措施:无

 监测				E1000.	 监测结果	<u> </u>			达标情
时间	监测点位		监测项目	第一次	第二次	第三次	平均值	标准值	况
			实测浓度(mg/m³)	11	9	16	12		
		SO_2	折算浓度(mg/m³)	17	14	25	19	100	达标
			排放速率(kg/h)	7.3×10 ⁻²	6.4×10 ⁻²	0.10	7.9×10 ⁻²		
			实测浓度(mg/m³)	3	4	5	4		
		NO_X	折算浓度(mg/m³)	5	6	8	6	200	达标
	生物液体		排放速率(kg/h)	2.0×10 ⁻²	2.9×10 ⁻²	3.2×10-2	2.7×10 ⁻²		
2020. 09.25	燃料燃烧 废气排放		实测浓度(mg/m³)	4.3	3.9	6.6	4.9		
03.25		颗粒物	折算浓度(mg/m³)	6.7	6.1	10.4	7.7	20	达标
			排放速率(kg/h)	2.8×10 ⁻²	2.8×10 ⁻²	4.2×10 ⁻²	3.3×10 ⁻²		
		排气	筒高度(m)		1	5			
		标况干	废气量(m³/h)	6616	7152	6347	6705		
		流	速 (m/s)	7.4	8.0	7.1	7.5		
		含	氧量 (%)	9.7	9.8	9.9	9.8	1	
		SO_2	实测浓度(mg/m³)	15	10	12	12	1	
			折算浓度(mg/m³)	23	15	18	19	100	达标
			排放速率(kg/h)	度(mg/m³) 11 9 16 12 度(mg/m³) 17 14 25 19 100 整 (kg/h) 7.3×10² 6.4×10² 0.10 7.9×10² 度(mg/m³) 3 4 5 4 度(mg/m³) 5 6 8 6 200 整 (kg/h) 2.0×10² 2.9×10² 3.2×10-2 2.7×10² 度(mg/m³) 6.7 6.1 10.4 7.7 20 整 (kg/h) 2.8×10² 2.8×10² 4.2×10² 3.3×10² (m) 15 (m³/h) 6616 7152 6347 6705 (m) 7.4 8.0 7.1 7.5 (m) 9.7 9.8 9.9 9.8 (mg/m³) 15 10 12 12 (mg/m³) 23 15 18 19 100 整 (kg/h) 0.10 7.3×10² 7.5×10² 8.3×10² (mg/m³) 4 6 6 6 (mg/m³) 4 6 6 6 (mg/m³) 6 9 9 9 200 整 (kg/h) 2.8×10² 4.4×10² 3.8×10² 3.9×10² (mg/m³) 7.5 7.6 6.0 6.4 (mg/m³) 8.4 11.7 9.2 9.8 20 Example (mg/m³) 7.331 6258 6854 Example (mg/m³) 7.3 7.331 6258 6854 Example (mg/m³) 7.3 7.331 6258 6854 Example (mg/m³) 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3					
			实测浓度(mg/m³)	4	6	6	6	1	
		NO_X	折算浓度(mg/m³)	6	9	9	9	200	达标
	生物液体		排放速率(kg/h)	2.8×10 ⁻²	4.4×10 ⁻²	3.8×10 ⁻²	3.9×10 ⁻²	-	
2020. 09.26	燃料燃烧		实测浓度(mg/m³)	5.5	7.6	6.0	6.4	1	
		颗粒物	折算浓度(mg/m³)	8.4	11.7	9.2	9.8	20	达标
			排放速率(kg/h)	3.8×10 ⁻²	5.6×10 ⁻²	3.8×10 ⁻²	4.4×10 ⁻²	1	
		排气	筒高度 (m)		1		1		
		标况干	废气量(m³/h)	6973	7331	6258	6854		
		流	速(m/s)	7.8	8.2	7.0	7.7		
		含	氧量 (%)	9.5	9.6	9.6	9.6		

注: 1、执行广东省《锅炉大气污染物排放标准》(DB44/765-2019)表 2 新建燃油锅炉大气污染物排放浓度限值;

- 2、燃料为生物液体燃料;
- 3、本结果只对当时采集的样品负责。

表 9-5 无组织废气监测结果

			监 测 结 果							
监测位置	监测项目	2	2020.09.2	5	2	单位				
		第一次	第二次	第三次	第一次	第二次	第三次			
无组织废气 上风向参照点 1#	颗粒物	0.187	0.176	0.182	0.172	0.180	0.189	mg/m ³		
无组织废气 下风向监控点 2#	颗粒物	0.324	0.317	0.333	0.309	0.315	0.335	mg/m ³		
无组织废气 下风向监控点 3#	颗粒物	0.365	0.389	0.397	0.357	0.387	0.371	mg/m ³		
无组织废气 下风向监控点 4#	颗粒物	0.347	0.336	0.344	0.328	0.334	0.356	mg/m ³		
广东省《大气污染物排 放限值》(DB44/27- 2001)第二时段无组织 排放监控浓度限值	颗粒物	1.0	1.0	1.0	1.0	1.0	1.0	mg/m ³		
达标情况		达标	达标	达标	达标	达标	达标			

注: 1、监控点 2#、3#、4#监测结果是未扣除参照值的结果;

9.3.2 厂界噪声

表 9-6 厂界噪声监测结果

	监测项目及结果 单位: dB(A)											
4户 口.	15河上台	监测时间	监测结果	(Leq)	标准	达标情						
编号	上 监测点位 L L L L L L L L L L L L L L L L L L L	二 监 则 的问	昼间	夜间	昼间	夜间	况					
1.44	厂界外东 1m 处	2020.09.25	58.1	47.2	60	50	达标					
1# 厂界外东 1m 处	2020.09.26	58.8	46.3	60	50	达标						
2#		2020.09.25	58.4	46.8	60	50	达标					
2#	厂界外南 1m 处	2020.09.26	59.0	47.1	60	50	达标					
24	厂界外西 1m 处	2020.09.25	57.6	45.9	60	50	达标					
3#)外外四Im 处	2020.09.26	56.7	46.9	60	50	达标					
1.44	# 厂界外北 1m 处	2020.09.25	57.0	46.2	60	50	达标					
4#		2020.09.26	56.2	47.3	60	50	达标					

注: 1、执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准;

9.3.3 污染物排放总量核算

由于《建设项目环境保护管理条例》要求, "在实施重点污染物排放总量控制 的区域内,排放污染物的建设项目需符合重点污染物排放总量控制的要求。"本项

^{2、}用最高浓度(最大值)的监控点位进行评价;

^{3、}本结果只对当时采集的样品负责。

^{2、}本结果只对当时监测结果负责。

目无审批部门审批的总量控制指标,环评中纳入总量指标的有化学需氧量、氨氮,二氧化硫、氮氧化物、颗粒物。本次验收项目中这五项的总量指标参照环评及批复中的总量指标,即为二氧化硫: 0.48t/a、氮氧化物: 0.013t/a、颗粒物: 0.3346t/a。

根据项目验收检测报告和计算公式,排放速率×排放时间=排放量,项目排放速率以验收检测报告对应污染物的最高排放速率计算,项目年工作 250 天,实行 2 班工作制,每班 6 个小时。本项目需要燃天然气的工作时间为 1h/d,即二氧化硫、氮氧化物、颗粒物(燃烧)的排放时间按 250h/a 计。项目总量情况见表 9-7。

类别	污染物	出口监测速率 (kg/h)	排放总量 (t/a)	合计	环评及批复中总量 控制指标(t/a)	达标 情况
	二氧化硫	6.4×10 ⁻² 0.1	0.025	0.025	0.48	达标
	氮氧化物	2.0×10 ⁻² 4.4×10 ⁻²	0.011	0.011	0.013	达标
废气	颗粒物 (燃烧)	2.8×10 ⁻² 5.6×10 ⁻²	0.014	0.161	0.3346	达标
	颗粒物 (振筛)	3.3×10 ⁻² 4.9×10 ⁻²	0.147	0.161	0.5340	

表 9-7 污染物总量核算表

经上述总量核算表可知,本项目的污染物排放总量满足环境影响报告表总量控制指标的预测值要求,项目主要污染物达标排放。

9.3.4 环境保设施调试效果

9.3.4.1 废气治理设施

根据有组织废气监测结果。

石英砂振筛废气经过"布袋除尘器"处理后废气达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

生物液体燃料燃烧废气经水箱过滤后废气达到广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)新建锅炉执行表 2 规定的大气污染物排放限值。

根据无组织废气监测结果。

破碎废气经"水喷淋"处理后无组织废气达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段无组织监控浓度限值。

堆场扬尘、装卸粉尘废气经水喷淋处理后无组织废气达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)中第二时段无组织排放标准限值要求。

9.3.4.2 噪声治理设施

根据厂界噪声监测结果,本单位采取隔声、距离衰减等综合措施后,各边界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)的2类标准。

10环保检查结果

10.1 建设项目环境管理制度情况

项目基本执行了环境影响评价制度和配套建设的环境保护设施与主体工程同时设计、同时施工、同时投产使用的环境保护"三同时"制度。

建设单位设立专门的环境管理部门并配备专职人员,负责项目建设中的污染治理设计、环境管理与相关环保部门沟通联系等工作。对公司的环境管理部门和专职人员有关职责明确如下:配合环境行政主管部门的工作;根据企业实际情况,制定企业的环境保护计划并组织实施;监督项目排污量;制定并实施建设项目环境监测方案和委托监测单位进行联络;监督检查项目施工期和运营期环保措施落实情况,确保环保治理设施正常运转;建立环境管理档案;定期向当地环保主管部门汇报环保设施运转情况,提交相关的监测报告。

项目已建立严格的环境保护管理制度、环保管理机构,并加强环保管理工作,及完善环保档案。

10.2 环境保护审批手续及环境保护档案资料管理情况

德庆县汉龙陶瓷原料有限公司于 2014 年 1 月委托四川省国环环境工程咨询有限公司编制了《德庆县悦城镇鲤鱼头汉龙陶瓷原料堆场年加工 5 万吨钠石粉建设项目环境影响报告书》,于 2014 年 4 月 12 日取得肇庆市环境保护局出具的《德庆县悦城镇鲤鱼头汉龙陶瓷原料堆场年加工 5 万吨钠石粉建设项目环境影响报告书的审批意见》(肇环建【2014】48 号)。于 2015 年 12 月 3 日通过了肇庆市环境保护局的验收,(肇环建【2015】100 号)。2016 年 8 月德庆县汉龙陶瓷原料有限公司委托广州材高环保科技有限公司编制了《德庆县汉龙陶瓷原料有限公司年加工 4 万吨石英矿石扩建项目环境影响报告表》,并于 2016 年 9 月 9 日取得了肇庆市生态环境局德庆分局的【关于《德庆县汉龙陶瓷原料有限公司年加工 4 万吨石英矿石扩建项目环境影响报告表》的批复】(德环项目【2016】27 号)。2020 年 3 月德庆县汉龙陶瓷原料有限公司委托广东中禹环境科技有限公司编制了《德庆县汉龙陶瓷原料有限公司技术改造项目环境影响报告表》,并于 2020 年 4 月 27 日取得了肇庆市生态环境局德庆分局,的【关于《德庆县汉龙陶瓷原料有限公司技术改造项目环境影响报告表》的批复】(肇环德建【2020】9 号)。

本项目设备及环境保护设施于 2020 年 3 月开工建设,于 2020 年 9 月 10 日竣工,并于 2020 年 9 月 15 日开始进行调试。

本项目已在 2020 年 8 月下旬完成全国排污许可登记,排污许可登记编号为: 914412263981624712001Y。

《德庆县汉龙陶瓷原料有限公司突发环境事件应急预案》于 2020 年 10 月 27 日在肇庆市生态环境局德庆分局备案成功,备案编号:德环应急备【2020】19 号。

10.3 其他环境保护设施

1、污染物排放口规范化整治检查

项目污染物排放口已按照有关规定设置标识,根据国家标准《环境保护图形标志-排放口(源)》和国家环境保护部排污口规范化整治要求(试行)》及《广东省污染源排污口规范化设置导则》(粤环【2008】42号)的技术要求,企业所有排放口(包括水、气、声、渣)必须按照"便于采样、便于计量监测、便于日常现场监督检查"的原则和规范化要求,设置与之相适应的环境保护图形标志牌,绘制企业排污口分布图,排污口的规范化要符合环保部门的相关要求。

- 2、主要环保设施(措施)的管理、运行及维护情况检查本项目各项环保设施管理有序,运行正常,维护良好。
- 3、固体废物贮存间的建设情况检查

本项目以按照项目一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及 2013 修改单,建设固体废物贮存间。

10.4 当前试生产到现在的守法情况

本项目已于 2020 年 9 月投入试生产,试生产时期已执行环保"三同时"制度:项目防治污染的设施,已与主体工程同时设计,同时施工,同时投入使用。试生产至今,本项目废气、噪声做到了达标排放符合环保规定要求,无重大污染事故发生,未接到周边居民对本项目的环保投诉,项目试运行情况良好,做到了守法生产。

11 验收监测结论

11.1 废水

由于本次技改项目未新增员工,故不新增生活废水。

项目生产废水主要为抑尘废水、车辆冲洗废水、洗砂废水及脱水废水。抑尘废水包括堆场抑尘废水、破碎及振筛工序抑尘废水,抑尘废水大部分进入产品最后蒸发于大气中,小部分抑尘废水汇入厂区周边的环形水沟,抑尘废水经沉淀池沉淀后回用于厂区抑尘;车辆冲洗废水经收集后排入沉淀池沉淀后回用于车辆冲洗;洗砂废水、脱水废水经多级沉淀后回用于洗砂工序,不外排。

11.2 废气

11.2.1有组织废气

筛分粉尘的颗粒物有组织排放浓度均达到广东省地方标准《大气污染物排放限值》(DB 44/27-2001)表 2 工艺废气大气污染物排放限值(第二时段)第二时段二级标准排放监控浓度限值的要求;生物液体燃烧废气排放的污染物执行广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)新建锅炉执行表 2 规定的大气污染物排放限值。

11.2.1无组织废气

颗粒物的无组织排放浓度(即:周界外浓度最大值)均达到广东省地方标准《大气污染物排放限值》(DB 44/27-2001)表2工艺废气大气污染物排放限值(第二时段)无组织排放监控浓度限值的要求。

11.3噪声

厂界东、南、西、北面噪声达到《工业企业厂界环境噪声排放标准》 (GB12348-2008)中2类标准要求。

11.4 固体废弃物

项目固体废物(污泥)作为产品外售。

11.5 建议

- (1)加强污染源治理设施管理,完善治理设施运行台账,确保废水、废气污染源治理长期稳定达标排放;
- (2)加强环保管理人员培训,落实环境保护管理制度,并自觉接受环保部门的监督管理和监测;

(3) 加强固体废物的规范化管理,按要求完善各污染物的标志。

11.6 结论

综上所述,该项目能按照设计要求做好环保建设。在建设及营运过程中,严格执行了环境影响评价制度和环保"三同时"制度;各项污染物治理措施基本按照环评要求进行了落实,不会对周围环境产生明显影响;各项相关的保护和恢复措施按照环评要求进行了落实。

由此可知,本项目达到建设项目竣工环境保护验收合格要求,建设项目通过竣工环境保护验收。

12 建设项目竣工环境保护"三同时"验收登记表

建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章):

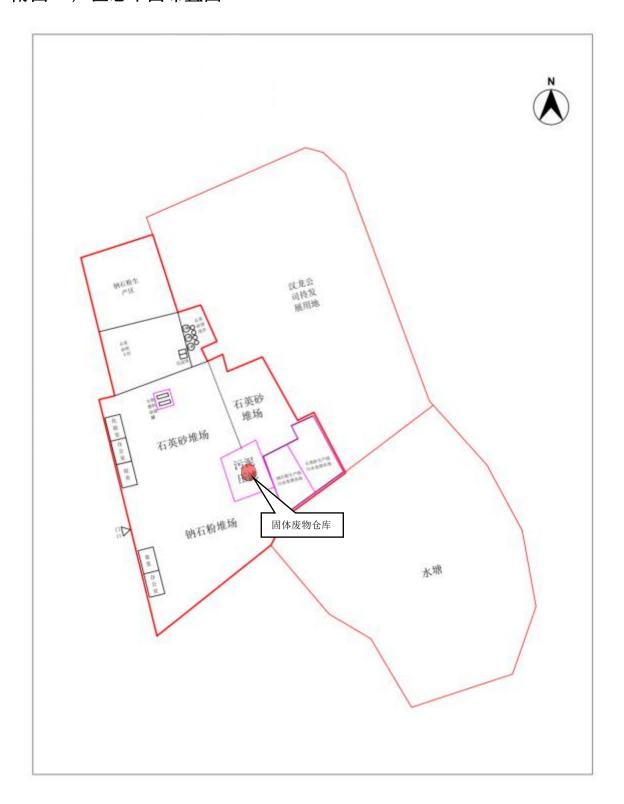
填表人(签字):

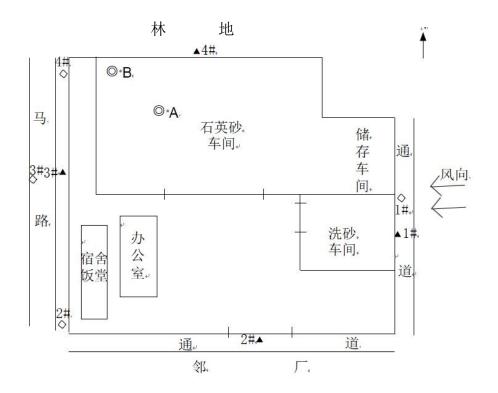
项目经办人(签字):

	项目名称		德庆县汉龙陶瓷原料	斗有限公司技术改				项目代码			建设地	.点	德庆县	!悦城镇翠塘村雾	会鲤鱼头
	行业类别(分类管理名录)	四十五、	,非金属矿采选业中的]"137、土砂石、	、石材开采加工	工"		建设性质		□新建 □ 改扩建 ☑	技术改造				3.119764°, 12.140675°
	设计生产能力	4	年产陶瓷砂(钠石粉)	5万吨、石英矿	石4万吨。		实	际生产能力	年产陶瓷矿	少(钠石粉)5万吨、石英 矿石4万吨。	环评单	位	广东	、中禹环境科技 有	育限公司
建	环评文件审批机关		肇庆市生态	环境局德庆分局				审批文号	肇五	不德环〔2020〕9号	环评文件	<u>-</u> 类型		报告表	
建设项目	开工日期		20	020.03				竣工日期		2020.10	排污许可证	申领时间		/	
質	环保设施设计单位			/			环保	设施施工单位		/	本工程排污的	可证编号		/	
	验收单位		德庆县汉龙阳	国瓷原料有限公=	i		环保	设施监测单位	东莞市	华溯检测技术有限公司	验收监测	付工况		80%以上	
	投资总概算(万元)			150		珂	F保投 资	资总概算 (万元))	10	所占比例	(%)		6.66	
	实际总投资			150		实	际环保	投资 (万元)		10	所占比例	(%)		6.66	
	废水治理 (万元)	4	废气治理 (万元)	/	噪声治理()	万元) 3	3	固体废物治理	璽 (万元)	2	绿化及生态	(万元)	1	其他 (万元)	/
	新增废水处理设施能力		•					新增废气处3	理设施能力		年平均工				
	运营单位		德庆县汉龙陶瓷	原料有限公司		运营单位社	会统一	-信用代码(或约	且织机构代码)	914412263981624712	验收时	间		2020年9月	
	污染物	原有排 放量(1)	本期工程实际排放 浓度(2)	本期工程允许 排放浓度(3)	本期工程产 生量(4)	本期工程自 削减量(5		本期工程实际 排放量(6)	本期工程核定 排放总量(7)	本期工程"以新带老"削减量(8)	全厂实际排 放总量(9)	全厂核定 量(1		区域平衡替代 削减量(11)	排放增减 量(12)
 污染	废水														
物排	化学需氧量		/												
放达	氨氮														
标与	石油类														
总量	废气														
控制	二氧化硫	0	9-16	0	0	0		0.025	0.025	0	0.025	0.02	20		
(工	烟尘	0	3.9-7.6	0	0	0		0.014	0.014	0	0.014	0.01	4		
业建	工业粉尘	0.806	10.9-16.7					0.147	0.147	0.659	0.147	0.14	17		-0.659
设项	氮氧化物	0	3-6	0	0	0		0.011	0.011	0	0.011	0.01	1		
目详	工业固体废物														
填)	与项目有关		/	/											
	的其他特征		/	/											
	污染物														

注: 1、排放增减量: (+) 表示增加, (-) 表示减少。2、(12)=(6)-(8)-(11), (9) = (4)-(5)-(8)-(11)+ (1)。3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升

附图 1 项目地理位置图


附图 2 项目卫星四至图


附图 3 项目环境敏感目标分布图

附图 4 厂区总平面布置图

附图 5 项目监测布点示意图

注: "◎A"石英砂振筛废气排放口, · "◎ B"生物液体燃料燃烧废气排放口, · "○"无组织废气采样点, 。 "▲"噪声监测点。。

附图 6 采样图片

附件1: 营业执照

昔 小 拉 昭

统一社会信用代码 914412263981624712

名

住

称 德庆县汉龙陶瓷原料有限公司

类

型

所

德庆县悦城镇翠塘村委会鲤鱼头

有限责任公司(自然人独资)

法定代表人廖汉龙

注 册 资 本 人民币叁佰万元

成 立 日 期 2014年07月16日

营业期限长期

经 营 范 围 陶瓷原料加工、堆放、销售。(依法须经批准的项目,经相关部门 批准后方可开展经营活动。)=

登记机关

2016年7月21日

企业信用信息公示系统网址: http://gsat.gdgs.gov.cn/

中华人民共和国国家工商行政管理总局监制

附件 2: 法人身份证

附件 3: 环评批复

肇庆市生态环境局文件

肇环德建〔2020〕9号

德庆县汉龙陶瓷原料有限公司技术改造建设项目环境影 响报告表的审批意见

德庆县汉龙陶瓷原料有限公司:

你单位报来的《德庆县汉龙陶瓷原料有限公司技术改造项目建设项目环境影响报告表》(以下简称《报告表》)及相关资料收悉。经研究,我局批复意见如下:

一、该项目选址位于德庆县悦城镇翠塘村委会鲤鱼头,地理坐标为(23°7'11.15"N,112°8'26.43"E)。项目在现有厂区内进行技术升级改造,技改前后总占地面积不变。技改项目对原料和生产线进行了调整,钠石粉生产线陶瓷原料石粉调整为陶瓷原料矿石

- 1 -

并自行破碎和研磨生产陶瓷砂;同时取消了原硫酸酸洗的工序,调整为水洗;石英砂生产线将石英原矿调整为石英砂,取消破碎工序,增加一道水洗工序。现有项目厂房、原料堆场、办公室等功能性质不变,项目技改后年产陶瓷砂(钠石粉)5万吨、石英砂4万吨。项目总投资150万元,其中环保投资10万元。

- 二、根据《报告表》的评价结论,该项目按照《报告表》所列的性质、规模、地点、采用的工艺及防治污染、防止生态破坏的措施进行建设,在严格落实《报告表》提出的各项污染防治措施、生态环境风险防范措施,并确保污染物排放稳定达标及符合总量控制要求的前提下,其建设从环境保护角度可行。该项目在建设和运营过程中还应重点做好以下工作:
- (一)运营期间,所有产生粉尘的工序都应进行围闭生产。 产生的颗粒物执行广东省地方标准《大气污染物排放限值》 (DB44/27-2001)第二时段二级标准及其无组织排放限值。燃烧 废气执行广东省地方环境标准《锅炉大气污染物排放标准》 (DB44/765-2019)表2新建锅炉大气污染物排放限值。
 - (二) 运营期间,项目生产废水循环回用不外排。
- (三)项目应采用低噪声设备,合理布局产生噪声的设备,并采取减振、隔音、消音等措施确保项目厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准的要求,防止噪声污染影响周围环境。

(四)项目一般固体废物应立足于回收利用,不能利用的应按有关要求进行处置;项目产生的危险废物应交有资质单位处置,并建立转移处置联单制度以便于监管;项目的日常生活垃圾应定点收集交环卫部门统一清运处理。

项目暂存的一般工业固体废物和危险废物,其污染控制须符合《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及《危险废物贮存污染控制标准》(GB18597-2001)的有关要求,防止造成二次污染。

- (五)项目应建立严格的环境管理及环境监测制度,落实岗位责任制,确保各类污染物稳定达标排放。
- (六)项目应制定有针对性和可操作性的环境风险事故防范措施和应急预案,建立健全事故应急体系,加强应急演练,落实有效事故风险防范和应急措施,有效防范污染事故的发生,并避免因发生事故对周围环境造成污染,确保环境安全。
- (七)项目须做好施工期环境保护工作,落实施工期污染防治。合理安排施工时间,确保施工噪声满足《建筑施工场界环境噪声排放标准》(GB12523-2011)的要求。
- 三、若项目的性质、规模、地点、采用的生产工艺或防治污染、防止生态破坏的措施发生重大变化,你公司应当重新报批项目环境影响评价文件。
 - 四、严格执行"三同时"制度,项目建成后应按建设项目环境

保护管理的要求开展竣工环境保护验收,经验收合格后主体工程 方可投入使用。

抄送: 广东中禹环境科技有限公司

肇庆市生态环境局

2020年4月27日

- 4 -

附件 4: 验收检测报告

东莞市华溯检测技术有限公司 HSJC DONGGUAN HUASU TESTING TECHNOLOGY CO.LTD

编写: 吴华盈水子园

复核:黄俊能 切明的

审核: 刘冰冰

签发: 郑世琪

签发日期: 2020年10月30日

说明(testing explanation):

本报告只适用于检测目的范围。
 This report is only suitable for the area of testing purposes.

本报告仅对来样或采样分析结果负责。
 The results relate only to the items tested.

本报告无采样(样品)照片、涂改无效。
 This report has no sampled photos, the alteration is invalid.

本报告无本公司检测专用章、騎縫章及计量认证章无效。
 This report must have the special impression and measurement of HSJC.

5、未经本公司书面批准,不得部分复制本报告。 This report shall not be copied partly without the written approval of HSJC.

6、本检测结果仅代表检测时委托方提供的工况条件下项目测值。 There testing result would only present the visual value taken at the scene within specific conditions where our clients point.

本机构通讯资料 (Contact of the HSJC):

单位名称:东莞市华溯检测技术有限公司

联系地址: 东莞市东城区牛山明新商业街六栋

Address: Sixth Building, MingXin Commercial Street, Newshan Village, Dongcheng Area, Dongguan City

邮政编码(Postcode): 523000

联系电话(Tel): 0769-27285578

传 真(Fax): 0769-23116852

电子部件 (Email): huasujc@163.com

pq ht http://www.huasujc.com

大芸士化湖场测技士方阳八马

报告编号(Report No.): HSJC20201030019

	1E - 1	Ann I	DB / 1	Bereit	- Test	ormat	Loune
7 1	10 m	HER A	25(1	3450	HIII	CERTIFIC	mon y

A SERVICE INTERIOR			
检测要素 Test Element	废气、噪声	检测类别 Test Category	委托验收检测
委托单位 Client	德庆县汉龙陶瓷原料 有限公司	委托编号 Entrust Numbers	HSJC20200911013
受检单位 Inspected Entity	德庆县汉龙陶瓷原料 有限公司	地 址 Address	肇庆市德庆县悦城镇翠塘 村委会鲤鱼头
采样人员 Sampling Personnel	罗朝阳、宋永康、郑景林, 林美辉	采样日期 Sampling Date	2020-09-25-26
检测项目 Test Items	石英於振筛废气: 颗粒物 生物液体燃料燃烧废气: SO: 无组织废气: 颗粒物 噪声: 厂界噪声	、NOx、颗粒物	
主要检测 仪器及编号 Major Instrumentation	設备名称 智能中流量 TSP 采样器 分析天平 低浓度称量恒温恒湿设 自动烟尘烟气综合测试 多功能声级计	8	所号 物应 2030 AUW120D NVN-800S ZR-3260 AWA5688
备注 Notes	The state of the s	A THE STATE OF	NAME OF THE PARTY

东莞市华溯检测技术有限公司 HSJC DONGGUAN HUASU TESTING TECHNOLOGY CO.,LTD

检测报告

Test Report

报告编号(Report No.); HSJC20201030019 二、监测期间天气情况一览表

第2页共12页 (Page 2 of 12 pages)

、 血液(州) 川リフ	CHILDE	96-4X				AND THE RESERVE THE PARTY OF THE PARTY.	
采样日期	采样 次数	天气 状况	气温 (31)	相对湿度(%)	大气压强 (kPa)	最大风速 (m/s)	风向
	第一次	明	30.8	58	100.6	2.7	东风
-0E	第二次	晰	32.8	55	100.5	2.4	东风
2020.09.25	第三次	睛	28.9	60	100.7	2.0	东风
	夜间	睛	27.5	65	100.8	2.2	东风
119	第一次	多云	29.8	63	100.8	2,8	东风
1	第二次	多云	30.2	61	100.7	2.5	东风
2020.09.26	第三次	多云	28.5	64	100.9	3.1	东风
A THE THE	夜间	多云	26.3	66	101.0	2.3	东风

	WELL	実际	正常生产	2020.	09.25	2020.	09.26	
产品名称	设计 年产量	年产量	日产量	监测期 何产量	生产 负荷	监测期 间产量	生产 負荷	备往
陶瓷砂 (钠石粉)	57711	5万吨	200 吨	170 吨	85.0%	180吨	90.0%	-
石英砂	4万吨	4万吨	160吨	139 吨	86.9%	144 吨	90.0%	. 11.00

Test Report

报告编号(Report No.): HSJC20201030019

第3页共12页 (Page 3 of 12 pages)

四、**检测结果**(Testing result) (一) 石英砂振錦胺气检测结果

		() 1	17年47年	THE LANGUAGE DAY	Self of			STATE OF THE PARTY			The state of
	A	T. T. T.		监监	测项目	及结	果		B	- T- T- T	
	治理措施	庙: 布袋馬	全	HSIC "		(5)			15	E T	
I	监测	监测	Mark Control	监测项目		监测结果		平均值	处理 效率	标准	达标
ı	时间	点位			第一次	第二次	第三次	Manager	(%)	值	情况
I	65		顆粒物	浓度(mg/m³)	81.2	74,3	60.5	72.0		**	-
1		石英砂 振筛废	排列	(簡高度 (m)	1516			A STATE	-		
1		气处理前	标况干	废气量 (m³/h)	2605	2945	2780	2777	-	a mA	***
			the state of the s	过速(m/s)	26.9	30.4	28.7	28.7	-		: **
	2020. 09.25		颗粒物	排放浓度(mg/m³)	14.5	12.4	10.9	12.6	80.9	120	达标
١		石英砂	有风专工中 均	排放速率 (kg/h)	4.0×10 ⁻²	4.1×10 ⁻²	3.3×10 ⁻²	3.8×10 ⁻²	00.5	0.64*	达标
1	0	振筛废气排放	排件	(简高度 (m)		S 1	0	-0	100	-1	-
1		П	标况于	·废气量(m³/h)	2787	3285	3007	3026	-	-	- 11
	- 40		Û	ti東 (m/s)	51.2	60.3	55.2	55.6	-	W = 0	
1	5		颗粒物	報度(mg/m³)	89.6	78.2	57.9	75.2	-	-	-
1		石英砂 振筛废) 排作	(简高度 (m)			- 1	9.		-	4
1	all	气处理	标况于	废气量(m ^{l/h})	2480	3187	2761	2809	7.0		-
			Ü	Ei⊈ (m/s)	25.6	32.9	28.5	29.0	349		-
	2020.		顆粒物	排放浓度(mg/m³)	16.7	14.8	11.2	14.2	79.4	120	达标
١	10 to 10	石英砂	#K(4%-10)	排放速率 (kg/h)	4.6×10 ⁻²	4.9×10 ⁻²	3.5×10 ⁻²	4.3×10 ⁻²		0.64*	达标
		振筛废气排放	排作	(簡高度 (m)	-16	1	0	- 15	-	22	
		П	标况于	·废气量 (m³/h)	2762	3312	3100	3058	-	7	(1
	0		Ü	在速(m/s)	50.7	60.8	56.9	56.1	40	-	
1	注: 1,	执行广东	省《大气》	污染物排放限值》(D	B44/27-200	1) 第二时段	と二级标准:				

- - 执行广东省《大气污染物拌放限值》(DB44/27-2001)第二时段二级标准;
 "*"表示拌气筒低于15 m 时, 其排放速率限值按本标准规定的外推法计算结果的50%执行;
 - 3、本结果只对当时采集的样品负责。

Test Report

报告编号(Report No.): HSJC20201030019 (二) 生物液体燃料燃烧废气检测结果

第4页共12页 (Page 4 of 12 pages)

	- 19.TP		监测项	目及	结 果	0.00	The state of the s		LIGHT.
治理	措施:无	1			A 50			A 68	
胜别 时间			聖網項目	第一次	监测结果 第二次	第三次	平均值	标准值	达标 情况
	4.7		实测浓度(mg/m³)	-11	9	16	12	100	0-3
		SO ₂	折算浓度(mg/m³)	17	14	25	.19	100	达标
100		0 -4	排放速率 (kg/h)	7.3×10-2	6.4×10 ⁻²	0.10	7.9×10 ⁻²	2.2	-
		Carried Street	实测浓度(mg/m³)	3	4	5	c 4	+	- (
		NOx	折算浓度(mg/m³)	5	6	8	6	200	达标
202	生物液体		排放達率 (kg/h)	2.0×10 ⁻²	2.9×10 ⁻²	3.2×10 ⁻²	2.7×10 ⁻²	400	-
2020	Chief S. S. Chief Co.	v.7	实测浓度(mg/m³)	4.3	3.9	6.6	4.9	-	*
09.2	D D	顆粒物	折算浓度(mg/m³)	6.7	6.1	10.4	7.7	20	达标
	(De time		排放速率 (kg/h)	2.8×10 ⁻²	2.8×10 ⁻²	4.2×10 ⁻²	3.3×10 ⁻³	43)	12
	HS	排气	简高度 (m)		H-1	5		10	-
		标况于	废气量 (m³/h)	6616	7152	6347	6705		
	- 1	鈽	(連 (m/s)	7.4	8.0	7.1	7.5	+	att
		含	氧量 (%)	9.7	9.8	9.9	9.8	** V.	4
-		1	实测浓度(mg/m³)	15	10	12	12	1044	-
-		SO ₂	折算浓度(mg/m³)	23	15	18	19	100	达标
	412		排放速率 (kg/h)	0.10	7.3×10 ⁻²	7.5×10°2	8.3×10 ⁻²	(22)	-8
	A STATE OF		实测浓度(mg/m³)	4	6	6	5	200	7
12		NOx	折算浓度(mg/m³)	6	9	9	8	200	达标
2020	生物液体	11 M	排放速率 (kg/h)	2.8×10 ⁻²	4.4×10 ⁻²	3.8×10 ⁻²	3.9×10 ⁻²		~
09.2	THE RESERVE OF THE PARTY OF THE		实测浓度(mg/m³)	5.5	7.6	6.0	6.4	120	The case
03.2	n n	颗粒物	折算浓度(mg/m³)	8.4	11.7	9.2	9.8	20	达标
100		- Al	排放速率 (kg/h)	3.8×10 ⁻²	5.6×10 ⁻²	3.8×10 ⁻²	4.4×10 ⁻²		
		排气	筒高度 (m)	A Comment	1	5	11-	**	**
	-1147	标况于	废气量 (m³/h)	6973	7331	6258	6854	-	194
18		游	速(m/s)	7.8	8.2	7.0	7.7	-	
115	19	含	氧量 (%)	9.5	9.6	9.6	9.6	Me Ic	

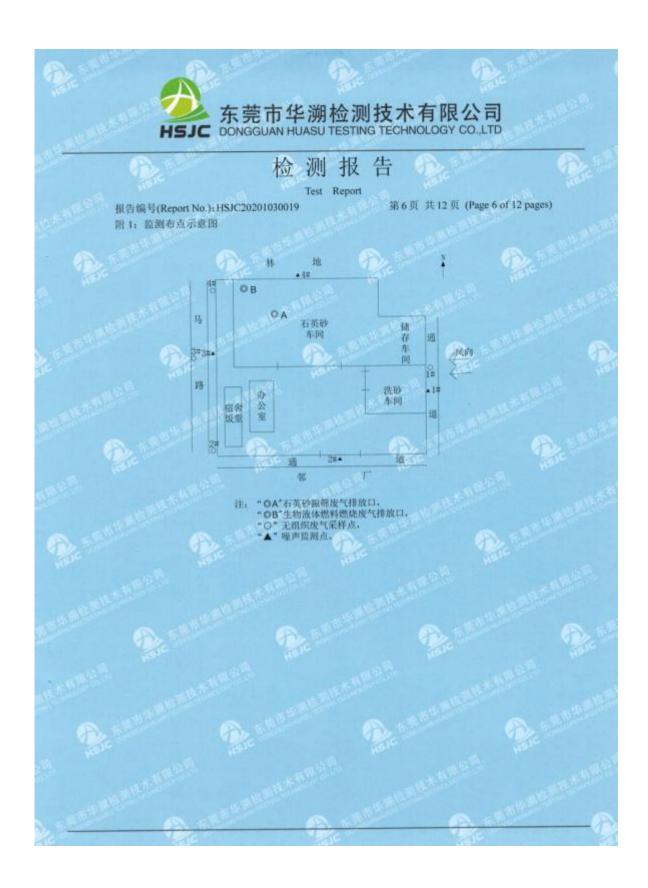
注: 1、执行广东省《锅炉大气污染物排放标准》(DB44/765-2019)表 2 新建燃油锅炉大气污染物排放浓度限值; 2、燃料为生物液体燃料; 3、本结果只对当时采集的样品负责。

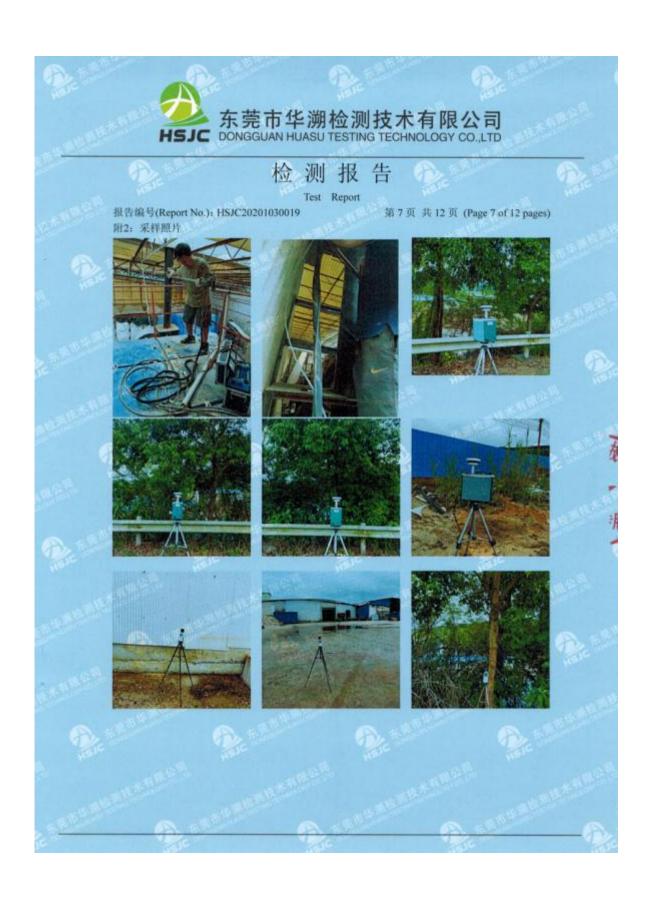
Test Report

报告编号(Report No.): HSJC20201030019

第5页 共12页 (Page 5 of 12 pages)

(三) 无组织废气检测结果


AL SHARE SHARE	Orani eta	. W. P.		监测	结果	100		
监测位置	监测项目		2020.09.2	63.		2020.09.20	6	单位
	HEIC	第一次	第二次	第三次	第一次	第二次	第三次	C
无组织废气 上风向参照点 1#	颗粒物	0.187	0.176	0.182	0.172	0.180	0.189	mg/m³
无组织废气 下风向监控点 2#	颗粒物	0.324	0.317	0,333	0.309	0.315	0.335	mg/m³
无组织废气 下风向监控点 3#	颗粒物	0.365	0.389	0.397	0.357	0.387	0.371	mg/m³
无组织废气 下风向监控点 4#	顆粒物	0.347	0.336	0.344	0.328	0.334	0.356	mg/m³
广东省《大气污染物排 放限值》 (DB44/27-2001) 第二时段无组织排放 监控浓度限值	颗粒物	1.0	1.0	1,0	1.0	1.0	1.0	mg/m³
达标情况		达标	达标	达标	达标	达标	达标	-


- 注: 1、监控点 2#、3#、4#监测结果是未扣除参照值的结果:
 - 2、用最高浓度(最大值)的監控点位进行评价;
 - 3、本结果只对当时采集的样品负责。

(四) 厂界噪声监测结果

N Sea /		項目及約	4 果		单位: dB(A	0	
46.55	HE THE REAL	10/c abl m 4 (ca)	监测结果		标准	达标	
編号	监测点位	监测时间	孫回	夜间	長回	夜间	情况
100	THE WAY IN M	2020.09.25	58.1	47.2	60	50	达标
1#	厂界外东 Im 处	2020.09.26	58.8	46.3	60	50	达标
	er man an an and an	2020.09.25	58.4	46.8	60	50	达标
2#	厂界外南 1m 处	2020,09.26	59.0	47.1	60	50	达标
-	1 W M = 1 - M	2020,09.25	57.6	45.9	60	50	达标
3#	厂界外西 1m 处	2020.09.26	56.7	46.9	60	50	达标
25	F # M H 1 - M	2020.09.25	57.0	46.2	60	50	达标
4#	厂界外北 Im 处	2020.09.26	56.2	47.3	60	50	达标

- 注: 1、执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准:
 - 2、本结果只对当时监测结果负责。

东莞市华溯检测技术有限公司 BONGGUAN HUASU TESTING TECHNOLOGY CO..LTD

检测报告

Test Report

报告编号(Report No.): HSJC20201030019

第8页共12页 (Page 8 of 12 pages)

五、本次检测的依据(Reference documents for the testing)

监测类别	监测项目	监测方法	使用仪器	检出限或范围
L. Trans	颗粒物	重量法 HJ 836-2017	自动類尘烟气综合测试 仪 ZR-3260	1.0 mg/m ³
	颗粒物	重量法 GB/T 16157-1996 及其修改单	自动烟尘烟气综合测试 仪 ZR-3260	#.
废气	SO ₂	定电位电解法 HJ 57-2017	自动烟尘烟气综合测试 仪 ZR-3260	3 mg/m ³
	NOx	定电位电解法 HJ693-2014	自动烟尘烟气综合测试 仪 ZR-3260	3 mg/m³
	颗粒物	重量法 GB/T15432-1995 及其修改单	智能中流量 TSP 采样器 転应 2030	0.001mg/m ³
吸激性	厂界噪声	《工业企业厂界环境噪声排 放标准》GB12348-2008	多功能声级计 AWA5688	28-133dB (A)
采样依据	HJ/T55-2000	996 及其修改单《固定污染源排 《大气污染物无组织排放监测技 18《工业企业厂界环境噪声排放标	术导则》	(物采样方法)

六、气体监测分析过程中的质量保证和质量控制

- (1) 尽量避免被测排放物中共存污染物对分析的交叉干扰。
- (2) 所有監測仪器均在检定/校准周期内。
- (3) 废气监测(分析)仪器在测试前按监测因子分别用标准气体和校准仪对其进行校核(标定),大气采样器在进入现场前对采样器流量计、流速计等进行校核。在测试时保证其采样流
- 量的准确。废气全程序空白测试结果见表 6-1、仪器校准记录见表 6-2。

表 6-1 全程序空白测试结果一览表

监测日期	滤膜初始恒重 (g)	现场空白 滤膜恒重 (g)	滤膜增量 (g)	允许增量 范围(mg)	是否合格
2020,09.25	0.47330	0.47343	0.00013	±0.5	合格
2020.09.26	0.42716	0.42724	0.00008	±0.5	合格

Test Report

报告编号(Report No.): HSJC20201030019

第9页 共12页 (Page 9 of 12 pages)

表 6-1 全程序空白测试结果一览表 (续)

监测 日期	采样头初始 恒重 (g)	现场空白采样 头恒重 (g)	采样头增量 (g)	允许增量 范围(mg)	是否 合格
2020. 09.25	17.78340	17.78358	0,00018	±0.5	合格
2020. 09.26	17.78322	17,78332	0.00010	±0.5	合格

表 6-1 全程序空白测试结果一览表 (续)

监测日期	滤筒初始恒重 (g)	现场空白滤筒 恒重 (g)	滤筒增量 (g)	允许增量 范围(mg)	是否 合格
2020. 09.25	0.98004	0.98014	0.00010	±0.5	合格
2020. 09.26	0.97098	0.97109	0.00011	±0.5	合格

表 6-2 仪器校准记录一览表

监测日期	仪器型号	示值流量 (L/min)	校准仪测量 结果(L/min)	示值误 差(%)	允许示值误 差范围(%)	是否合格
2020.09.25	智能中流量 TSP 采样器 畅应 2030	100.0	100.1	-0.10	±5	合格
2020.09.26	智能中流量 TSP 采样器 崂应 2030	100,0	100.1	-0.10	±5	合格

Test Report

报告编号(Report No.): HSJC20201030019

第10页 共12页 (Page 10 of 12 pages) 表 6-2 仪器校准记录一览表 (续)

监测 日期	仪器型号	瞬时流量示值 (L/min)	校准仪测量 结果(L/min)	满量 程值 (L/min)	示值 误差(%)	允许示值 误差范围 (%)	是否合格
2020. 09.25	自动烟尘烟气 综合测试仪 ZR-3260	20.0	19.2	80	1.0	±5	合格
2020. 09.26	自动烟尘烟气 综合测试仪 ZR-3260	20.0	19.4	80	0.75	±5	合格

	-SC 0-7	汉帝仪他	CAK BLAK	C 2007		
校准日期		2020.09.25		0.5	2020.09.26	
仪器型号	自动炮	生期气综合 ZR-3260	测试仪	自动烟	尘烟气综合 ZR-3260	测试仪
项目	SO ₂	NO	NO ₂	SO ₂	NO	NO ₂
标气浓度(mg/m³)	152.4	114.4	166.4	152.4	114.4	166.4
测量结果 (mg/m³)	151	114	167	153	115	166
示值误差(%)	-0.92	-0.35	0.36	0.39	0.52	-0.24
允许示值误差范围(%)	±5	±5	±5	±5	±5	±5
是否合格	合格	合格	合格	合格	合格	合格

Test Report

报告编号(Report No.): HSJC20201030019

第 11 页 共 12 页 (Page 11 of 12 pages)

七、噪声监测分析过程中的质量保证和质量控制

- (1) 合理布设监测点位, 保证各监测点布设的代表性和可比性。
- (2) 噪声监测分析过程中,使用经计量部门检定的、并在有效使用期内的声级计;声级计 在测量前后用标准声源在现场进行校准,其前后校准示值偏差不大于 0.5dB、声级计校准记录表 见表 7-1;

测量前 后允许 腾温 校准器标准 示值偏 是否 仪器型号 校准设备型号 仪器示值 dB(A) 示值偏 值 dB (A) 合格 日期 差dB 差范围 dB 測量前 93.8 從间 0.2 ±0.5 合格 测量后 94.0 2020. 多功能声级计 声校准器 94.0 09.25 AWA5688 AWA6221B 海量縣 93.8 夜间 0.1 ±0.5 合格 測量后 93.9 随量商 93.8 昼间 0.1 ±0.5 合格 测量后 93.9 多功能声级计 2020. 声校准器 94.0

测量前

测量后

夜间

93.8

93.7

-0.1

±0.5

合格

表 7-1 声级计校准记录表

八、监测结论

AWA5688

AWA6221B

09.26

- 1、石英砂振筛废气中颗粒物达到广东省《大气污染物排放限值》(DB44/27-2001)第二时段 二级标准要求: 生物液体燃料燃烧废气中 SO₂、NO_X、颗粒物达到广东省《锅炉大气污染物排放 标准》(DB44/765-2019)表 2 新建燃油锅炉大气污染物排放浓度限值要求: 无组织废气中颗粒 物达到广东省《大气污染物排放限值》(DB44/27-2001》第二时段无组织排放监控浓度限值要求。
- 2、厂界东、南、西、北面噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准要求。

附件5: 应急预案备案表

企业事业单位突发环境事件应急预案备案表

单位名称	德庆县汉龙陶瓷原料有限公司	机构代码	914412263981624712
法定代表人	廖汉龙	联系电话	13922635525
联系人	原資料	联系电话	13822637955
预兆		电子邮箱	
地址	德庆县悦城镇鲤鱼头(2	3°07'00.9"N.11	2°08'42.7"E)
预案名称	德庆县汉龙陶瓷原料有限	公司突发环境	事件应急预案
风险规则	一般风险等级[一般-大	(Q0) +	t-# (Q0)]

本单位于 2020 年 10 月 19 日签署发布了突发环境事件应急预案、备案条件齐全、现根 送各案。

本单位承诺,本单位在办理各案中所提供的相关文件及其信息均经本单位确认真实, 无虚假,且未隐瞒事实。

養養制定单位(金百) 製人 投送时间 5050 10,2

1.突发环境事件应急预案各案表;
2.环境应急预案及编制说明:
环境应急预案(签署发布文件、环境应急预案文本);
識別说明(编制过程模述、重点内容说明、征求意见及采纳情况说明、评
审情况说明):
3.环境风险评估报告:
4.环境应急资源调查报告;
5.环境应急预案评审意见。
该单位的突发环境事件应急预案备案文件已于2010年/6 月97日收讫。文
件齐全、子以备案。 公案受理部门 企业年10月27日
與林海教施 [2010] 19年
物はあるち間名 内料 からまる
PROVIS MAN 1900 G

注: 备案编号由企业所在地且银行战区划代码、年份、流水号、企业风险银划(一般L、较大M、重大H)及两区域(T)条延半時组级。例如,河北省水年县**重大环境风险非两区域企业环境应急损策 2015 备案。是水年县环境保护周当年受理的第 26 个备案。则编号为: 136429-2015-026-H; 如果是两区域的企业。 则编号为: 130429-2015-026-HT。

附件 6: 项目竣工公示、调试公示

主英 > 项目公示

项目公示

德庆县汉龙陶瓷原料有限公司技术改造项目环保设施开始调试日期公示

日期: 2020-00-15-00:00 対流大数: 87

確庆長区及跨坡部門有限公司技术改造项目选址课庆長院城镇军建刊委会辖鱼头。丰项目主要生产等意动(纳石和)。石英矿石、年产等金 动(纳石和)5万吨、石英矿石4万吨、项目总投资为150万元。其中环间投资约10万元。占总投资额约6.66%。广肃建筑为额路和、占地周阳约 为44391.7平方米、广肃地面硬底化、主要有纳石和生产区。石类地址干区、石类地域法区、石类地域场、纳石和堆场、本项目主要设备及设施 有被钟机、能长牌、振动性、被运用。

總決學欠稅跨級原料有限公司于2014年1月委托四川衛區环环境工程咨询用限公司编制了《德庆县稅城鎮壓鱼头仅发開級原料体场中加工5万吨的石砂建设项目环境影响按捺针》。于2014年4月12日取得能大市环境保护周出舆的《德庆县ຕ城镇壁鱼头仅发跨温原料接场中加工5万吨的石砂建设项目环境影响报告书的审社意见》(畲环建【2014】48号)。于2015年12月3日通过了畲庆市环境保护周边协议、《畲环建【2015】100号),2016年8月每庆县仅发跨级原料有限公司经历广州村商市环律环有得公司编制了《德庆县仅发现金额条原料有限公司年加工4万吨石安全分扩建项目环境影响报告等》,并于2016年9月9日取得了畲庆市生态环境周德长为目的【关于《德庆县权发现岛级市科院公司年加工4万吨石炭矿石矿建项目环境影响报告等》,的批复】(德区项目 [2016] 27号)。2020年3月德庆县位发阳岛政府政府经济下东中属环境和大与地区的编制了《德庆县仅发和金原和科院公司经济下东中属环境和,并于2020年4月27日取得了畲庆市生态环境局德庆分局,约1条年(德庆县仅发购金原料有限公司技术改造项目环境影响报告集),并于2020年4月27日取得了畲庆市生态环境局德庆分局,约1条年(德庆县仅发购金原料有限公司技术改造项目环境影响报告集)(畲环间建【2020】9号)。

经过加工项目项已完工,涉及的环保工程包括生活生产成米治费设施、排气管等用主体工程用步骤设则封建成。根据《建设项目环境保护管理条例》及《建设项目由工环境保护检收暂行办法》(国环规环件(2017)4号),现用进失费汉龙跨旋原料有限公司技术改造项目环境保护企品开始编述日期(开始编述日期为2020年9月15日)在网络平以公示。

德庆县汉龙陶县原料有限公司 2020年9月15日

全力打造创新的节能环保服务模式

主意。随首公示。

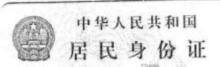
即且公示

项目公示

德庆县汉龙陶瓷原料有限公司技术改造项目环境保护设施竣工日期公示

日期: 2020-09-10-09:02 | 別数次数: 125

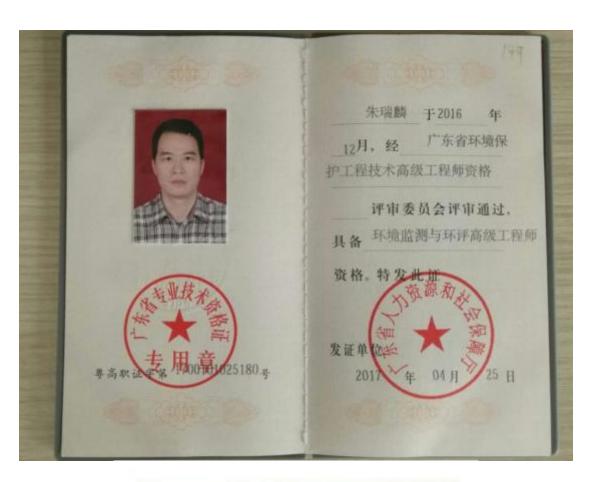
德庆县汉龙跨建原料有限公司技术改造项目选业德庆县价城镇军建村委会辖舍头、本项目主要生产秘密处(纳石岭),石房扩石、年产陶瓷 处(纳石岭)5万吨、石英矿石4万吨、项目总统通为150万元。其中环保经通约10万元。占总统通额的6.66%。厂商建筑为银杏岭。占地里积约 为44391.7平方米、厂房地面建筑化、主要有的石档生产区、石英处用干区、石英处南北区、石英处境场、纳石粉境场。本项目主要设备及设施 有破碎机、机水液、层边线、输送市。


德庆县汉发陶瓷原料有限公司于2014年1月委托因川省国际环境工程经验有限公司编制了《德庆县记址编辑查头汉发陶瓷原料堆场中加工5万吨的石粉建设项目环境影响报告书》,于2014年4月12日取得截庆市环境保护周出典的《德庆县记址编辑查头汉发陶瓷原料堆场中加工5万吨的石粉建设项目环境影响报告书的审批意见》(福环建〔2014〕48号》。于2015年12月3日通过了堡庆市环境保护局的验收,(留环建〔2015〕100号》。2016年8月德贝县汉发购盈原料有限公司等加工4万吨石英矿石矿建项目环境影响报告表》,并于2016年9月9日取得了堡庆市生态环境局德庆分局的【关于《德庆县汉发购盈原料有限公司等加工4万吨石英矿石矿建项目环境影响报告表》的批复】(德环语目【2016】27号)。2020年3月德庆县汉发购瓷原料有限公司等加工4万吨石英矿石矿建项目环境影响报告表》的批复】(德环语目【2016】27号)。2020年3月德庆县汉发购瓷原料有限公司新广方中境环境科技有限公司编制了《德庆县汉发购瓷原料有限公司等加工4万吨百万吨。

经过施工项目现已完工、涉及的环保工程包括生产的水泊提设施、除气筒等同主体工程同步建设同时建筑。根据《建设项目环境保护管理条件》及《建设项目统工环境保护验收暂行办法》(国环境环产(2017)4号)、现将维庆县区定跨徽原料有提公司技术改造项目环境保护设施建工日期2020年9月10日在网站予以公示。

德庆县以龙路豪原料有限公司 2020年9月10日

附件 7: 验收组专家高级工程师及身份证明



普波勒美一位庆市公安局超州分局。 有效期限 2006 09.08-长期

附件 8: 验收意见及签到表

德庆县汉龙陶瓷原料有限公司技术改造项目 竣工环境保护验收意见

2020年11月5日,根据国家《建设项目环境保护管理条例》、以及省市有关建设项目企业自主验收等法律法规的要求,本公司自主召开德庆县汉龙陶瓷原料有限公司技术改造项目(以下简称"项目")竣工环境保护验收会。会议邀请了环评单位(广东中禹环境科技有限公司)、竣工环境保护验收监测单位(东莞市华溯检测技术有限公司)和三位专家,共同组成了验收工作组(名单附后)。验收组现场检查了项目有关建设内容、审阅了建设项目环境影响报告表及审批意见,查阅了验收监测报告等有关材料,并对照了《建设项目竣工环境保护验收暂行办法》,经质询与讨论,形成验收意见如下;

一、工程建设基本情况

- (一) 建设地点、规模、主要建设内容
- (1) 项目名称:德庆县汉龙陶瓷原料有限公司技术改造项目。
- (2) 建设地点: 德庆县悦城镇翠塘村委会鲤鱼头。

项目主要产品为有年产陶瓷砂(钠石粉)、石英矿石,年设计产量陶瓷砂(钠石粉) 5万吨、石英矿石 4万吨,实际年产量陶瓷砂(钠石粉)4.2万吨、石英矿石 3.4万吨。

项目环评报告及批复阶段建设内容与实际建设内容对比一览表见表1。

表1 项目环评报告及批复阶段建设内容与实际建设内容对比一览表

工程类别	工程名称	环评及批复阶段建设内容	实际建设内容	与环评相符 性分析
主体工程	厂房建设	厂房为钢结构,占地面积约为 44391.7m ² ,1层,厂房地面硬 底化。	厂房为钢结构,占地面积约为 44391.7m ² ,1层,厂房地面硬底 化。	一致
	给水	生产用水由枫香根排渠经泵抽 至回用池再经泵抽至各生产用 水点。	生产用水由枫香根排渠经泵抽至 回用泡再经泵抽至各生产用水点	一致
公用工程	排水	实行雨污分流制。大部分水进 入产品或在蒸发至大气中,生 活污水处理达标后全部回用于 生产;生产废水经沉淀后用于 酒水抑尘或循环使用;初期雨 水经处理后回用于厂区抑尘; 车辆清洗废水经车辆清洗池筒	实行雨污分流制。大部分进入产品 或在蒸发至大气中,生活污水处理 达标后全部回用于生产,生产废水 经沉淀后用于洒水抑尘或循环使 用,初期雨水经处理后回用于厂区 抑尘;车辆清洗废水经车辆清洗池 简单沉淀后再经污水沉淀池沉淀	一致

验收组成员签名:廖汉龙 多份书 块粒 圣治子 样爱 和新城

		单沉淀后再经污水沉淀池沉淀 后回用于厂区车辆冲洗。不外 排。	后回用于厂区车辆冲洗,不外排。	
	配电系统	接市政供电系统	接市政供电系统	一致
	污水 处理 工程	项目废水主要为生产废水。生 产废水进入污水处理站经处理 达标后全部回用,不外排。	项目废水主要为生产废水。生产废水进入污水处理站经处理达标后 全部回用,不外排。本项目不新增 员工,依托原有处理设施。	一致
环保工程	废气 治理 工程	堆场扬尘经堆场内配套洒水装置神尘后无组织排放;装卸粉尘在厂区内配置洒水装置,装卸时洒水抑尘后无组织排放;振筛粉尘递过布装除尘器除尘设施后由 15m 高排气筒 G1 排放;生物液体燃料燃烧废气;不低于 15m 高排气筒 G2 排放;厨房烹调油焗经静电除油器处理后高空排放。	堆场扬尘经堆场内配套酒水装置 抑尘后无组织排放:装卸粉尘在厂 区内配置洒水装置。装卸时洒水抑 尘后无组织排放;振筛粉尘通过布 袋除尘器除尘设施后由 15m 高排 气筒 G1 排放; 生物液体燃料燃烧 废气经水箱过滤后由 15m 高排气 筒 G2 排放; 厨房烹调油燃经静电 除油器处理后高空排放。	一致
	噪声 治理 工程	选用低噪设备、距离衰减等综 合措施。	选用低噪设备、距离衰减等综合措施。	一致
	固废 处置 工程	生活垃圾集中收集后交由当地 环卫部门清运处理,工业固废 回收商处理。	生活垃圾集中收集后交由当地环 卫部门清运处理;工业固废作为产 品外售处理。	一致

(二)建设过程及环保审批情况

2014 年 1 月,委托四川省国环环境工程咨询有限公司编制了《德庆县悦城镇鲤鱼头 汉龙陶瓷原料堆场年加工 5 万吨钠石粉建设项目环境影响报告书》;

2014年4月12日,肇庆市生态环境局,【关于《德庆县悦城镇鲤鱼头汉龙陶瓷原料 堆场年加工5万吨钠石粉建设项目环境影响报告书》的批复】肇环建(2014)48号文。

2015 年 10 月 22 日,肇庆市生态环境局,《德庆县汉龙陶瓷原料有限公司年加工 5 万吨钠石粉建设项目竣工环境保护验收的意见》(肇环建(2015)100 号);

2016 年 8 月,委托广州材高环保科技有限公司编制了《德庆德庆县汉龙陶瓷原料有限公司年加工 4 万吨石英矿石扩建项目环境影响报告表》:

2016年9月9日,肇庆市生态环境局德庆分局,【关于《德庆德庆县汉龙陶瓷原料 有限公司年加工4万吨石英矿石扩建项目环境影响报告表》的批复】(德环项目【2016】 27号);

2020 年 3 月,委托了广东中禹环境科技有限公司编制了《德庆县汉龙陶瓷原料有限公司技术改造项目环境影响报告表》;

2020年4月7日,肇庆市生态环境局德庆分局,【关于《德庆县汉龙陶瓷原料有限 公司技术改造项目环境影响报告表》的批复】(肇环德建【2020】9号)。

本项目已在 2020 年 8 月下旬完成全国排污许可登记,排污许可登记编号为: 914412263981624712001Y。

《德庆县汉龙陶瓷原料有限公司突发环境事件应急预案》于 2020 年 10 月 27 日在肇 庆市生态环境局德庆分局备案,备案编号:德环应急备【2020】19 号。

2020年9月25日~26日,建设单位委托东莞市华溯检测技术有限公司进行验收监测。 2020年10月建设单位编制了《德庆县汉龙陶瓷原料有限公司技术改造项目竣工环境保护 验收监测报告》。

(三)验收范围

本次验收范围为《德庆县汉龙陶瓷原料有限公司技术改造项目环境影响报告表》及其 批复中已建成内容(项目已建成石英砂生产线和钠石粉生产线,未期建成钠石粉生产线破 碎工艺部分生产设备)。

二、工程变动情况

本次验收项目的性质、规模、地点、生产工艺与环评和批复意见基本一致。项目建设由于市场原因,项目分期建设,项目已建成石英砂生产线和钠石粉生产线,尚有部分钠石粉生产线破碎工艺生产设备未建。以上变动均未造成对环境影响加重,不属于重大变动。

三、环境保护设施建设情况

(一) 废水

由于本次技改项目未新增员工、故不新增生活废水。

项目生产废水主要为抑尘废水、车辆冲洗废水、洗砂废水及脱水废水,经多级沉淀后 回用于洗砂工序,不外排。

(二) 废气

本项目大气污染物主要为堆场扬尘、装卸粉尘、破碎、振筛工序产生的粉尘颗粒物以 及生物液体燃料燃烧废气。

验收组成员签名: 廖双龙 多路名 *** 花家乡 神寒莲 养品林

表2 废气治理措施及排放形式

排放	女源	污染物 种类	治理措施	设计指标
堆场扬尘			无组织排放, 四周围挡, 设置挡风抑尘网 封闭堆场, 并在堆场内配套洒水装置, 定 时洒水	
装卸粉尘	无组织	颗粒物	无组织排放,堆场地面硬化、设置顶棚、 四周围挡并在厂区内配置洒水装置,装卸 时洒水抑尘	广东省地方标准《大气污染物 排放限值》(DB44/27-2001)第 二时段无组织排放限值
破碎粉尘			无组织排放,围蔽作业,设置围挡密闭及 机器周边设置自动洒水装置,车间周边设 置的自动洒水装置对其进一步抑尘	
石英砂振 節粉尘	有组织	颗粒物	振筛机围挡密闭,粉尘由吸尘管及吸风口 收集后通过收集管路进入布袋除尘舆除	排取限值》(DB44/27-2001)第
P# 44 IL	无组织	颗粒物	振筛机上方设置自动洒水装置和围挡密 闭,生产区域设置自动洒水装置	二时段二级标准及其无组织 排放限值
生物液体 燃料燃烧 废气	有组织	SO ₂ 、 NO _x 、烟 尘		广东省地方环境标准《锅炉大 气污染物排放标准》 (DB44/765-2019)表2新建 锅炉大气污染物排放限值

(三)噪声

项目主要噪声源为破碎机、水洗机、输送带、振动筛等设备以及运输车辆运行产生的 噪声,其强度值大约为70~85dB(A)。

项目通过选用低噪音设备,加强设备隔声、消声等措施处理:

(四)固体废物

项目固体废物已设置一般工业固体废物贮存点。

项目沉淀池污泥、布袋除尘器收集粉尘,集中收集后做为产品外售。

四、环境保护设施调试效果

(一) 验收监测结果

1、废气监测结果

根据验收检测报告,破碎粉尘经"布袋除尘器"处理后达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准排放限值要求:无组织废气达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放限值要求。

验收组成员签名:廖汉龙海佛子 法地 院家乡 科琴道 本部的

根据验收检测报告,生物液体燃料燃烧废气经水箱过滤后由排气筒 G2 排放达到广东省地方环境标准《锅炉大气污染物排放标准》(DB44/765-2019)表 2 新建锅炉大气污染物排放限值要求。

2、噪声监测结果

根据验收检测报告,本单位采取隔声、距离衰减等综合措施后,各边界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)的2类标准。

3、固体废弃物

建立了固体废物管理制度,设置一般工业固体废物贮存点。

项目沉淀池污泥、布袋除尘器收集粉尘,集中收集后做为产品外售。

项目固体废物已按环评报告表及批复的要求妥善处置。

五、工程建设对环境的影响

项目建设环保措施落实,对周边环境的影响较少。经核实,项目从立项至调试过程中 无公众投诉和违法或处罚记录。

六、验收结论

验收组认为该项目环保手续完善,落实了环评报告表及环评批复的要求,主要污染物 排放浓度达标排放,环境管理制度健全,达到建设项目竣工环境保护验收合格要求,通过 竣工环境保护验收。

七、后续工作要求及建议

- 1、进一步完善管理制度,加强环保设施运行及维护,确保长期稳定达标排放。
- 2、进一步完善项目竣工环境保护验收监测报告,并做好验收后续工作。

德庆县汉龙陶瓷原料有限公司 2020年11月5日

验收组成员签名。廖政龙 冷静水。 院家身 神學達 本品的

德庆县汉龙陶瓷原料有限公司技术改造项目环保竣工验收评审会验收小组

成员名单签到表

姓名	单位	身份证号码	职务/职称	电话
原始先	金女女以太阳省 (金型太阳公司 14421113451)	एक्ष्याप्रगारिकश	好级的	1382263 7955
米女女	来先产华州 检测,技术输出3	\$1555175 -5123-57	五五	17/14/11/5
本系统	1 57	X Lan 180130 PLICARION	46	(36025t3799
がある	843	4453029804230097	W.	13500921945
A vorto	明治也 经放光治心倒发压力协能到 如日子川的石石679134 茶的好	450196207611651W	SAM.	(292262132)
Mark Mark	编在且以於陶為國部省所以	P11501999999	なままろん	1371312/129
R. W. S.	及鬼名 12 KB 以左阳 有信料的 94018319960917131×	9 94018319960917131x	454 14	1312238463
2. 12. Br	2% No 18 8 872	433101196911011057	Male	1332256 1000
公白路	至身成 一大在身後我看你我有限人 40,302,960526153	(621 6520 499 LOCION	工程、海	13112 322 982

德庆县汉龙陶瓷原料有限公司

2020年11月5日

76

附件9其他需要说明的事项

德庆县汉龙陶瓷原料有限公司技术改造项目竣 工环境保护验收其他需要说明的事项

根据《建设项目竣工环境保护验收暂行办法》,"其他需要说明的事项"中 应如实记载的内容包括环境保护设施设计、施工和验收过程简况,环境影响报 告书及其审批部门审批决定中提出的除环境保护设施外的其他环境保护措施的 实施情况以及整改工作情况等,现将我单位需要说明的具体内容和要求梳理如 下:

一、环境保护设施设计、施工和验收过程简况

1.1 设计过程简况

德庆县汉龙陶瓷原料有限公司技术改造项目已于 2020 年 3 月动工的时候将环境保护设施纳入了初步设计,并于 2020 年 9 月完成环保工程的建设。环境保护设施的设计符合环境保护设计规范的要求,落实了防止污染和生态破坏的措施和环境保护设施投资概算。

1.2 施工过程简况

本项目为德庆县汉龙陶瓷原料有限公司技术改造项目的综合验收,项目的主体工程已于2020年3月开工建设,并于2020年9月建设完成。项目环境保护设施竣工日期为2020年9月10日,环保设施调试起日期为2020年9月15日。

1.3 验收过程简况

建设单位于 2020 年 9 月委托东莞市华溯检测技术有限公司对项目进行验收检测,并于 2020 年 9 月完成该项目的环境保护验收报告工作,按照有关环保法规和相关技术规范的要求,编制完成了《德庆县汉龙陶瓷原料有限公司技术改造项目竣工环境保护验收调查报告》。

2020年11月5日,德庆县汉龙陶瓷原料有限公司在德庆县自主召开德庆县 汉龙陶瓷原料有限公司技术改造项目(以下简称"项目")竣工环境保护验收 会。会议邀请了三位专家、竣工环境保护验收监测单位(东莞市华溯检测技术 有限公司)和环评单位(广东中禹环境科技有限公司)共同组成了验收工作组。经现场检查、质询与讨论,会议形成了验收意见,明确本工程环境保护设施符合验收条件,验收组同意本项目通过竣工环境保护验收。

二、其他环保措施的实施情况

环境影响报告表及其批复提出的除环境保护设施外的其他环保措施主要包括制度措施和配套措施等,现将需要说明的措施内容和要求梳理如下:

2.1 制度措施落实情况

项目已按环评报告表要求设置了环保组织机构及领导小组,明确岗位职责,由专人负责日常管理。

2.2 配套措施落实情况

项目污染物排放口已按照有关规定设置规范的标识。

三、整改工作情况

验收组提出如下建议:

- 1、建议企业设环保负责专人,进一步完善管理制度和环保设施运行及维护 记录,实行环保运行登记台账制,定期组织人员培训,确保污染物排放长期稳 定达标:
- 2、进一步修改完善验收报告,补充与验收相关的资料后可上报环保部门。 建设单位已设立环保组织机构及领导小组,明确岗位职责,由专人负责日 常管理。建设单位已根据建议完善了验收调查报告相关内容,在后续工作中加 强环保设施运行管理,确保污染物稳定达标排放。

德庆县汉龙陶瓷原料有限公司 2020年11月5日